File size: 6,725 Bytes
03b8ca7
5812f2d
03b8ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcecdab
 
 
 
 
 
03b8ca7
 
bcecdab
 
03b8ca7
 
 
bcecdab
 
 
 
 
 
 
 
 
 
 
 
 
03b8ca7
bcecdab
03b8ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcecdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03b8ca7
 
 
 
bcecdab
 
 
 
 
 
 
 
 
 
 
 
 
03b8ca7
 
bcecdab
 
03b8ca7
 
 
bcecdab
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import streamlit as st
import time
import os
from collections.abc import Collection
from langchain.memory import ChatMessageHistory
from langchain_community.chat_message_histories import (
    StreamlitChatMessageHistory,
)
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain.chains import RetrievalQA
import nest_asyncio
import pymongo
import logging
from langchain.docstore.document import Document
import redis
import threading

# config
nest_asyncio.apply()
logging.basicConfig(level=logging.INFO)
database = "AlertSimAndRemediation"
collection = "alert_embed"
index_name = "alert_index"
stream_name = "alerts"
redis_port = 16652

# Streamlit Application
st.set_page_config(
    page_title="ASMR Query Bot πŸ””",
    page_icon="πŸ””",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'About': "https://github.com/ankush-003/alerts-simulation-and-remediation"
    }
)

st.title('ASMR Query Bot πŸ””')

# embedding model
embedding_args = {
    "model_name" : "BAAI/bge-large-en-v1.5",
    "model_kwargs" : {"device": "cpu"},
    "encode_kwargs" : {"normalize_embeddings": True}
}
embedding_model = HuggingFaceEmbeddings(**embedding_args)

# vector search
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
    os.environ["MONGO_URI"],
    f"{database}.{collection}",
    embedding_model,
    index_name=index_name,
)

# contextualising prev chats
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is."""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", contextualize_q_system_prompt),
        MessagesPlaceholder("chat_history"),
        ("human", "{input}"),
    ]
)

# prompt
system_prompt = """
You are a helpful query assistant for Alertmanager, an open-source system for monitoring and alerting on system metrics. Your goal is to accurately answer questions related to alerts triggered within the Alertmanager system based on the alert information provided to you. \
You will be given details about specific alerts, including the alert source, severity, category, and any other relevant metadata. Using this information, you should be able to respond to queries about the nature of the alert, what it signifies, potential causes, and recommended actions or troubleshooting steps. \
Your responses should be clear, concise, and tailored to the specific alert details provided, while also drawing from your broader knowledge about Alertmanager and monitoring best practices when relevant. If you cannot provide a satisfactory answer due to insufficient information, politely indicate that and ask for any additional context needed. \

<context>
{context}
</context>
"""

qa_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        MessagesPlaceholder("chat_history"),
        ("human", "{input}"),
    ]
)

if "chat_messages" not in st.session_state:
    st.session_state.chat_messages = []

# streamlit history
history = StreamlitChatMessageHistory(key="chat_messages")

# Initialize chat history
if len(history.messages) == 0:
    history.add_ai_message("Hey I am ASMR Query Bot, how can i help you ?")

with st.sidebar:
    st.title('Settings βš™οΈ')
    st.subheader('Models and parameters')
    selected_model = st.sidebar.selectbox('Choose a model', ['Llama3-8B', 'Llama3-70B', 'Mixtral-8x7B'], key='selected_model')
    if selected_model == 'Mixtral-8x7B':
        model_name="mixtral-8x7b-32768"
    elif selected_model == 'Llama3-70B':
        model_name='Llama3-70b-8192'
    elif selected_model == 'Llama3-8B':
        model_name='Llama3-8b-8192'
    temp = st.sidebar.slider('temperature', min_value=0.01, max_value=1.0, value=0.0, step=0.01)
    k = st.sidebar.slider('number of docs retrieved', min_value=1, max_value=20, value=2, step=1)

def get_response(query, config):
  chat = ChatGroq(temperature=temp, model_name=model_name)
  qa_retriever = vector_search.as_retriever(
      search_type="similarity",
      search_kwargs={"k": k},
  )
  history_aware_retriever = create_history_aware_retriever(
      chat, qa_retriever, contextualize_q_prompt
  )
  question_answer_chain = create_stuff_documents_chain(chat, qa_prompt)
  rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
  conversational_rag_chain = RunnableWithMessageHistory(
      rag_chain,
      lambda session_id: history,
      input_messages_key="input",
      history_messages_key="chat_history",
      output_messages_key="answer",
  )
  return conversational_rag_chain.invoke({"input": prompt}, config=config)

def clear_chat_history():
    st.session_state.chat_messages = []
    history.add_ai_message("Hey I am ASMR Query Bot, how can i help you ?")

st.sidebar.button('Clear Chat History', on_click=clear_chat_history)  

for msg in history.messages:
    st.chat_message(msg.type).write(msg.content)

# preprocessing context
def format_docs_with_metadata(docs):
    formatted_docs = []
    for i, doc in enumerate(docs, start=1):
        metadata_str = "\n".join([f"**{key}**: `{value}`\n" for key, value in doc.metadata.items() if key != "embedding"])
        formatted_doc = f"- {doc.page_content}\n\n**Metadata:**\n{metadata_str}"
        formatted_docs.append(formatted_doc)   
    return "\n\n".join(formatted_docs)

def stream_data(response):
  for word in response.split(" "):
        yield word + " "
        time.sleep(0.05)

if prompt := st.chat_input():
    with st.chat_message("Human"):
        st.markdown(prompt)

    # As usual, new messages are added to StreamlitChatMessageHistory when the Chain is called.
    config = {"configurable": {"session_id": "any"}}
    res = get_response(prompt, config)

    with st.chat_message("AI"):
      st.write_stream(stream_data(res['answer']))
      with st.popover("View Source"):
        st.markdown("### Source Alerts πŸ“’")
        st.markdown(format_docs_with_metadata(res['context']))