Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers.models import AutoencoderKL | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
DESCRIPTION = '# Animagine XL' | |
if not torch.cuda.is_available(): | |
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>' | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv( | |
'CACHE_EXAMPLES') == '1' | |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '2048')) | |
USE_TORCH_COMPILE = os.getenv('USE_TORCH_COMPILE') == '1' | |
ENABLE_CPU_OFFLOAD = os.getenv('ENABLE_CPU_OFFLOAD') == '1' | |
MODEL = "Linaqruf/animagine-xl" | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
MODEL, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant='fp16') | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, | |
mode='reduce-overhead', | |
fullgraph=True) | |
else: | |
pipe = None | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate(prompt: str, | |
negative_prompt: str = '', | |
prompt_2: str = '', | |
negative_prompt_2: str = '', | |
use_prompt_2: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
target_width: int = 1024, | |
target_height: int = 1024, | |
original_width: int = 4096, | |
original_height: int = 4096, | |
guidance_scale_base: float = 12.0, | |
num_inference_steps_base: int = 50) -> PIL.Image.Image: | |
generator = torch.Generator().manual_seed(seed) | |
if negative_prompt == '': | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
negative_prompt_2 = None # type: ignore | |
if negative_prompt_2 == '': | |
negative_prompt_2 = None | |
return pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
target_size=(target_width, target_height), | |
original_size=(original_width, original_height), | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type='pil').images[0] | |
examples = [ | |
'face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck', | |
'face focus, bishounen, masterpiece, best quality, 1boy, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck', | |
] | |
# choices = [ | |
# "Vertical (9:16)", | |
# "Portrait (4:5)", | |
# "Square (1:1)", | |
# "Photo (4:3)", | |
# "Landscape (3:2)", | |
# "Widescreen (16:9)", | |
# "Cinematic (21:9)", | |
# ] | |
# choice_to_size = { | |
# "Vertical (9:16)": (768, 1344), | |
# "Portrait (4:5)": (912, 1144), | |
# "Square (1:1)": (1024, 1024), | |
# "Photo (4:3)": (1184, 888), | |
# "Landscape (3:2)": (1256, 832), | |
# "Widescreen (16:9)": (1368, 768), | |
# "Cinematic (21:9)": (1568, 672), | |
# } | |
with gr.Blocks(css='style.css', theme='NoCrypt/miku') as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value='Duplicate Space for private use', | |
elem_id='duplicate-button', | |
visible=os.getenv('SHOW_DUPLICATE_BUTTON') == '1') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt = gr.Text( | |
label='Prompt', | |
max_lines=1, | |
placeholder='Enter your prompt', | |
) | |
negative_prompt = gr.Text( | |
label='Negative Prompt', | |
max_lines=1, | |
placeholder='Enter a negative prompt', | |
value='lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry', | |
) | |
use_prompt_2 = gr.Checkbox( | |
label='Use prompt 2', | |
value=False | |
) | |
prompt_2 = gr.Text( | |
label='Prompt 2', | |
max_lines=1, | |
placeholder='Enter your prompt', | |
visible=False, | |
) | |
negative_prompt_2 = gr.Text( | |
label='Negative prompt 2', | |
max_lines=1, | |
placeholder='Enter a negative prompt', | |
visible=False, | |
) | |
# with gr.Row(): | |
# aspect_ratio = gr.Dropdown(choices=choices, label="Aspect Ratio Preset", value=choices[2]) | |
with gr.Row(): | |
width = gr.Slider( | |
label='Width', | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label='Height', | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Accordion(label='Advanced Config', open=False): | |
with gr.Accordion(label='Conditioning Resolution', open=False): | |
with gr.Row(): | |
original_width = gr.Slider( | |
label='Original Width', | |
minimum=1024, | |
maximum=4096, | |
step=32, | |
value=4096, | |
) | |
original_height = gr.Slider( | |
label='Original Height', | |
minimum=1024, | |
maximum=4096, | |
step=32, | |
value=4096, | |
) | |
with gr.Row(): | |
target_width = gr.Slider( | |
label='Target Width', | |
minimum=1024, | |
maximum=4096, | |
step=32, | |
value=1024, | |
) | |
target_height = gr.Slider( | |
label='Target Height', | |
minimum=1024, | |
maximum=4096, | |
step=32, | |
value=1024, | |
) | |
seed = gr.Slider(label='Seed', | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0) | |
randomize_seed = gr.Checkbox(label='Randomize seed', value=True) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider( | |
label='Guidance scale', | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=12.0) | |
num_inference_steps_base = gr.Slider( | |
label='Number of inference steps', | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=50) | |
with gr.Column(scale=2): | |
with gr.Blocks(): | |
run_button = gr.Button('Generate') | |
result = gr.Image(label='Result', show_label=False) | |
gr.Examples(examples=examples, | |
inputs=prompt, | |
outputs=result, | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
inputs = [ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_prompt_2, | |
seed, | |
width, | |
height, | |
target_width, | |
target_height, | |
original_width, | |
original_height, | |
guidance_scale_base, | |
num_inference_steps_base, | |
] | |
prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name='run', | |
) | |
negative_prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
prompt_2.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
negative_prompt_2.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
run_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
demo.queue(max_size=20).launch() | |