Spaces:
Sleeping
Sleeping
File size: 18,291 Bytes
b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 b7cef43 158fb03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import toml
import gradio as gr
import numpy as np
import PIL.Image
import torch
import utils
import gc
from safetensors.torch import load_file
import lora_diffusers
from lora_diffusers import LoRANetwork, create_network_from_weights
from huggingface_hub import hf_hub_download
from diffusers.models import AutoencoderKL
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
DESCRIPTION = "Animagine XL"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
IS_COLAB = utils.is_google_colab()
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
MODEL = "Linaqruf/animagine-xl"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
pipe = DiffusionPipeline.from_pretrained(
MODEL,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl.py",
use_safetensors=True,
variant="fp16",
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
else:
pipe = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_image_path(base_path):
extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif"]
for ext in extensions:
if os.path.exists(base_path + ext):
return base_path + ext
# If no match is found, return None or raise an error
return None
def update_selection(selected_state: gr.SelectData):
lora_repo = sdxl_loras[selected_state.index]["repo"]
lora_weight = sdxl_loras[selected_state.index]["multiplier"]
updated_selected_info = f"{lora_repo}"
updated_prompt = sdxl_loras[selected_state.index]["sample_prompt"]
updated_negative = sdxl_loras[selected_state.index]["sample_negative"]
return (
updated_selected_info,
selected_state,
lora_weight,
updated_prompt,
negative_presets_dict.get(updated_negative, ""),
updated_negative,
)
def create_network(text_encoders, unet, state_dict, multiplier, device):
network = create_network_from_weights(
text_encoders, unet, state_dict, multiplier=multiplier
)
network.load_state_dict(state_dict)
network.to(device, dtype=unet.dtype)
network.apply_to(multiplier=multiplier)
return network
# def backup_sd(state_dict):
# for k, v in state_dict.items():
# state_dict[k] = v.detach().cpu()
# return state_dict
def generate(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
target_width: int = 1024,
target_height: int = 1024,
original_width: int = 4096,
original_height: int = 4096,
guidance_scale: float = 12.0,
num_inference_steps: int = 50,
use_lora: bool = False,
lora_weight: float = 1.0,
set_target_size: bool = False,
set_original_size: bool = False,
selected_state: str = "",
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
network = None # Initialize to None
network_state = {"current_lora": None, "multiplier": None}
# _unet = pipe.unet.state_dict()
# backup_sd(_unet)
# _text_encoder = pipe.text_encoder.state_dict()
# backup_sd(_text_encoder)
# _text_encoder_2 = pipe.text_encoder_2.state_dict()
# backup_sd(_text_encoder_2)
if not set_original_size:
original_width = 4096
original_height = 4096
if not set_target_size:
target_width = width
target_height = height
if negative_prompt == "":
negative_prompt = None
if not use_prompt_2:
prompt_2 = None
negative_prompt_2 = None
if negative_prompt_2 == "":
negative_prompt_2 = None
if use_lora:
if not selected_state:
raise Exception("You must select a LoRA")
repo_name = sdxl_loras[selected_state.index]["repo"]
full_path_lora = saved_names[selected_state.index]
weight_name = sdxl_loras[selected_state.index]["weights"]
lora_sd = load_file(full_path_lora)
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
if network_state["current_lora"] != repo_name:
network = create_network(
text_encoders, pipe.unet, lora_sd, lora_weight, device
)
network_state["current_lora"] = repo_name
network_state["multiplier"] = lora_weight
elif network_state["multiplier"] != lora_weight:
network = create_network(
text_encoders, pipe.unet, lora_sd, lora_weight, device
)
network_state["multiplier"] = lora_weight
else:
if network:
network.unapply_to()
network = None
network_state = {"current_lora": None, "multiplier": None}
try:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
target_size=(target_width, target_height),
original_size=(original_width, original_height),
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images[0]
if network:
network.unapply_to()
network = None
return image
except Exception as e:
print(f"An error occurred: {e}")
raise
finally:
# pipe.unet.load_state_dict(_unet)
# pipe.text_encoder.load_state_dict(_text_encoder)
# pipe.text_encoder_2.load_state_dict(_text_encoder_2)
# del _unet, _text_encoder, _text_encoder_2
if network:
network.unapply_to()
network = None
if use_lora:
del lora_sd, text_encoders
gc.collect()
examples = [
"face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck",
"face focus, bishounen, masterpiece, best quality, 1boy, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck",
]
negative_presets_dict = {
"None": "",
"Standard": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
"Weighted": "(low quality, worst quality:1.2), 3d, watermark, signature, ugly, poorly drawn, bad image",
}
with open("lora.toml", "r") as file:
data = toml.load(file)
sdxl_loras = [
{
"image": get_image_path(item["image"]),
"title": item["title"],
"repo": item["repo"],
"weights": item["weights"],
"multiplier": item["multiplier"] if "multiplier" in item else "1.0",
"sample_prompt": item["sample_prompt"],
"sample_negative": item["sample_negative"],
}
for item in data["data"]
]
saved_names = [hf_hub_download(item["repo"], item["weights"]) for item in sdxl_loras]
with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
title = gr.HTML(
f"""<h1><span>{DESCRIPTION}</span></h1>""",
elem_id="title",
)
gr.Markdown(
f"""Gradio demo for [Linaqruf/animagine-xl](https://huggingface.co/spaces/Linaqruf/Animagine-XL)""",
elem_id="subtitle",
)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
selected_state = gr.State()
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
prompt = gr.Text(
label="Prompt",
max_lines=5,
placeholder="Enter your prompt",
)
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Enter a negative prompt",
value="lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
)
with gr.Accordion(label="Negative Presets", open=False):
negative_presets = gr.Dropdown(
label="Negative Presets",
show_label=False,
choices=list(negative_presets_dict.keys()),
value="Standard",
)
with gr.Row():
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_lora = gr.Checkbox(label="Use LoRA", value=False)
with gr.Group(visible=False) as prompt2_group:
prompt_2 = gr.Text(
label="Prompt 2",
max_lines=5,
placeholder="Enter your prompt",
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=5,
placeholder="Enter a negative prompt",
)
with gr.Group(visible=False) as lora_group:
selector_info = gr.Text(
label="Selected LoRA",
max_lines=1,
value="No LoRA selected.",
)
lora_selection = gr.Gallery(
value=[(item["image"], item["title"]) for item in sdxl_loras],
label="Animagine XL LoRA",
show_label=False,
allow_preview=False,
columns=2,
elem_id="gallery",
show_share_button=False,
)
lora_weight = gr.Slider(
label="Multiplier",
minimum=0,
maximum=1,
step=0.05,
value=1,
)
with gr.Group():
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Accordion(label="Advanced Options", open=False):
seed = gr.Slider(
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=12.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=100,
step=1,
value=50,
)
with gr.Group():
with gr.Row():
set_target_size = gr.Checkbox(
label="Target Size", value=False
)
set_original_size = gr.Checkbox(
label="Original Size", value=False
)
with gr.Group():
with gr.Row():
original_width = gr.Slider(
label="Original Width",
minimum=1024,
maximum=4096,
step=32,
value=4096,
visible=False,
)
original_height = gr.Slider(
label="Original Height",
minimum=1024,
maximum=4096,
step=32,
value=4096,
visible=False,
)
with gr.Row():
target_width = gr.Slider(
label="Target Width",
minimum=1024,
maximum=4096,
step=32,
value=width.value,
visible=False,
)
target_height = gr.Slider(
label="Target Height",
minimum=1024,
maximum=4096,
step=32,
value=height.value,
visible=False,
)
with gr.Column(scale=2):
with gr.Blocks():
run_button = gr.Button("Generate", variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
lora_selection.select(
update_selection,
outputs=[
selector_info,
selected_state,
lora_weight,
prompt,
negative_prompt,
negative_presets,
],
queue=False,
show_progress=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt2_group,
queue=False,
api_name=False,
)
negative_presets.change(
fn=lambda x: gr.update(value=negative_presets_dict.get(x, "")),
inputs=negative_presets,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_lora.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora,
outputs=lora_group,
queue=False,
api_name=False,
)
set_target_size.change(
fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
inputs=set_target_size,
outputs=[target_width, target_height],
queue=False,
api_name=False,
)
set_original_size.change(
fn=lambda x: (gr.update(visible=x), gr.update(visible=x)),
inputs=set_original_size,
outputs=[original_width, original_height],
queue=False,
api_name=False,
)
width.change(
fn=lambda x: gr.update(value=x),
inputs=width,
outputs=target_width,
queue=False,
api_name=False,
)
height.change(
fn=lambda x: gr.update(value=x),
inputs=height,
outputs=target_height,
queue=False,
api_name=False,
)
inputs = [
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_prompt_2,
seed,
width,
height,
target_width,
target_height,
original_width,
original_height,
guidance_scale,
num_inference_steps,
use_lora,
lora_weight,
set_target_size,
set_original_size,
selected_state,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
)
prompt_2.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
)
negative_prompt_2.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
)
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|