Spaces:
Sleeping
Sleeping
File size: 16,174 Bytes
df2accb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
import numpy as np
from tqdm import tqdm
import torch
import torchaudio
from utils.io import save_audio
from utils.audio import load_audio_torch
# This function is obtained from librosa.
def get_rms(
y,
*,
frame_length=2048,
hop_length=512,
pad_mode="constant",
):
padding = (int(frame_length // 2), int(frame_length // 2))
y = np.pad(y, padding, mode=pad_mode)
axis = -1
# put our new within-frame axis at the end for now
out_strides = y.strides + tuple([y.strides[axis]])
# Reduce the shape on the framing axis
x_shape_trimmed = list(y.shape)
x_shape_trimmed[axis] -= frame_length - 1
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
if axis < 0:
target_axis = axis - 1
else:
target_axis = axis + 1
xw = np.moveaxis(xw, -1, target_axis)
# Downsample along the target axis
slices = [slice(None)] * xw.ndim
slices[axis] = slice(0, None, hop_length)
x = xw[tuple(slices)]
# Calculate power
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
return np.sqrt(power)
class Slicer:
"""
Copy from: https://github.com/openvpi/audio-slicer/blob/main/slicer2.py
"""
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 5000,
min_interval: int = 300,
hop_size: int = 10,
max_sil_kept: int = 5000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError(
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
)
if not max_sil_kept >= hop_size:
raise ValueError(
"The following condition must be satisfied: max_sil_kept >= hop_size"
)
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
begin = begin * self.hop_size
if len(waveform.shape) > 1:
end = min(waveform.shape[1], end * self.hop_size)
return waveform[:, begin:end], begin, end
else:
end = min(waveform.shape[0], end * self.hop_size)
return waveform[begin:end], begin, end
# @timeit
def slice(self, waveform, return_chunks_positions=False):
if len(waveform.shape) > 1:
# (#channle, wave_len) -> (wave_len)
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = get_rms(
y=samples, frame_length=self.win_size, hop_length=self.hop_size
).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = (
i - silence_start >= self.min_interval
and i - clip_start >= self.min_length
)
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
].argmin()
pos += i - self.max_sil_kept
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if (
silence_start is not None
and total_frames - silence_start >= self.min_interval
):
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
if len(sil_tags) == 0:
return [waveform]
else:
chunks = []
chunks_pos_of_waveform = []
if sil_tags[0][0] > 0:
chunk, begin, end = self._apply_slice(waveform, 0, sil_tags[0][0])
chunks.append(chunk)
chunks_pos_of_waveform.append((begin, end))
for i in range(len(sil_tags) - 1):
chunk, begin, end = self._apply_slice(
waveform, sil_tags[i][1], sil_tags[i + 1][0]
)
chunks.append(chunk)
chunks_pos_of_waveform.append((begin, end))
if sil_tags[-1][1] < total_frames:
chunk, begin, end = self._apply_slice(
waveform, sil_tags[-1][1], total_frames
)
chunks.append(chunk)
chunks_pos_of_waveform.append((begin, end))
return (
chunks
if not return_chunks_positions
else (
chunks,
chunks_pos_of_waveform,
)
)
def split_utterances_from_audio(
wav_file,
output_dir,
max_duration_of_utterance=10.0,
min_interval=300,
db_threshold=-40,
):
"""
Split a long audio into utterances accoring to the silence (VAD).
max_duration_of_utterance (second):
The maximum duration of every utterance (seconds)
min_interval (millisecond):
The smaller min_interval is, the more sliced audio clips this script is likely to generate.
"""
print("File:", wav_file.split("/")[-1])
waveform, fs = torchaudio.load(wav_file)
slicer = Slicer(sr=fs, min_interval=min_interval, threshold=db_threshold)
chunks, positions = slicer.slice(waveform, return_chunks_positions=True)
durations = [(end - begin) / fs for begin, end in positions]
print(
"Slicer's min silence part is {}ms, min and max duration of sliced utterances is {}s and {}s".format(
min_interval, min(durations), max(durations)
)
)
res_chunks, res_positions = [], []
for i, chunk in enumerate(chunks):
if len(chunk.shape) == 1:
chunk = chunk[None, :]
begin, end = positions[i]
assert end - begin == chunk.shape[-1]
max_wav_len = max_duration_of_utterance * fs
if chunk.shape[-1] <= max_wav_len:
res_chunks.append(chunk)
res_positions.append(positions[i])
else:
# TODO: to reserve overlapping and conduct fade-in, fade-out
# Get segments number
number = 2
while chunk.shape[-1] // number >= max_wav_len:
number += 1
seg_len = chunk.shape[-1] // number
# Split
for num in range(number):
s = seg_len * num
t = min(s + seg_len, chunk.shape[-1])
seg_begin = begin + s
seg_end = begin + t
res_chunks.append(chunk[:, s:t])
res_positions.append((seg_begin, seg_end))
# Save utterances
os.makedirs(output_dir, exist_ok=True)
res = {"fs": int(fs)}
for i, chunk in enumerate(res_chunks):
filename = "{:04d}.wav".format(i)
res[filename] = [int(p) for p in res_positions[i]]
save_audio(os.path.join(output_dir, filename), chunk, fs)
# Save positions
with open(os.path.join(output_dir, "positions.json"), "w") as f:
json.dump(res, f, indent=4, ensure_ascii=False)
return res
def is_silence(
wavform,
fs,
threshold=-40.0,
min_interval=300,
hop_size=10,
min_length=5000,
):
"""
Detect whether the given wavform is a silence
wavform: (T, )
"""
threshold = 10 ** (threshold / 20.0)
hop_size = round(fs * hop_size / 1000)
win_size = min(round(min_interval), 4 * hop_size)
min_length = round(fs * min_length / 1000 / hop_size)
if wavform.shape[0] <= min_length:
return True
# (#Frame,)
rms_array = get_rms(y=wavform, frame_length=win_size, hop_length=hop_size).squeeze(
0
)
return (rms_array < threshold).all()
def split_audio(
wav_file, target_sr, output_dir, max_duration_of_segment=10.0, overlap_duration=1.0
):
"""
Split a long audio into segments.
target_sr:
The target sampling rate to save the segments.
max_duration_of_utterance (second):
The maximum duration of every utterance (second)
overlap_duraion:
Each segment has "overlap duration" (second) overlap with its previous and next segment
"""
# (#channel, T) -> (T,)
waveform, fs = torchaudio.load(wav_file)
waveform = torchaudio.functional.resample(
waveform, orig_freq=fs, new_freq=target_sr
)
waveform = torch.mean(waveform, dim=0)
# waveform, _ = load_audio_torch(wav_file, target_sr)
assert len(waveform.shape) == 1
assert overlap_duration < max_duration_of_segment
length = int(max_duration_of_segment * target_sr)
stride = int((max_duration_of_segment - overlap_duration) * target_sr)
chunks = []
for i in range(0, len(waveform), stride):
# (length,)
chunks.append(waveform[i : i + length])
if i + length >= len(waveform):
break
# Save segments
os.makedirs(output_dir, exist_ok=True)
results = []
for i, chunk in enumerate(chunks):
uid = "{:04d}".format(i)
filename = os.path.join(output_dir, "{}.wav".format(uid))
results.append(
{"Uid": uid, "Path": filename, "Duration": len(chunk) / target_sr}
)
save_audio(
filename,
chunk,
target_sr,
turn_up=not is_silence(chunk, target_sr),
add_silence=False,
)
return results
def merge_segments_torchaudio(wav_files, fs, output_path, overlap_duration=1.0):
"""Merge the given wav_files (may have overlaps) into a long audio
fs:
The sampling rate of the wav files.
output_path:
The output path to save the merged audio.
overlap_duration (float, optional):
Each segment has "overlap duration" (second) overlap with its previous and next segment. Defaults to 1.0.
"""
waveforms = []
for file in wav_files:
# (T,)
waveform, _ = load_audio_torch(file, fs)
waveforms.append(waveform)
if len(waveforms) == 1:
save_audio(output_path, waveforms[0], fs, add_silence=False, turn_up=False)
return
overlap_len = int(overlap_duration * fs)
fade_out = torchaudio.transforms.Fade(fade_out_len=overlap_len)
fade_in = torchaudio.transforms.Fade(fade_in_len=overlap_len)
fade_in_and_out = torchaudio.transforms.Fade(fade_out_len=overlap_len)
segments_lens = [len(wav) for wav in waveforms]
merged_waveform_len = sum(segments_lens) - overlap_len * (len(waveforms) - 1)
merged_waveform = torch.zeros(merged_waveform_len)
start = 0
for index, wav in enumerate(
tqdm(waveforms, desc="Merge for {}".format(output_path))
):
wav_len = len(wav)
if index == 0:
wav = fade_out(wav)
elif index == len(waveforms) - 1:
wav = fade_in(wav)
else:
wav = fade_in_and_out(wav)
merged_waveform[start : start + wav_len] = wav
start += wav_len - overlap_len
save_audio(output_path, merged_waveform, fs, add_silence=False, turn_up=True)
def merge_segments_encodec(wav_files, fs, output_path, overlap_duration=1.0):
"""Merge the given wav_files (may have overlaps) into a long audio
fs:
The sampling rate of the wav files.
output_path:
The output path to save the merged audio.
overlap_duration (float, optional):
Each segment has "overlap duration" (second) overlap with its previous and next segment. Defaults to 1.0.
"""
waveforms = []
for file in wav_files:
# (T,)
waveform, _ = load_audio_torch(file, fs)
waveforms.append(waveform)
if len(waveforms) == 1:
save_audio(output_path, waveforms[0], fs, add_silence=False, turn_up=False)
return
device = waveforms[0].device
dtype = waveforms[0].dtype
shape = waveforms[0].shape[:-1]
overlap_len = int(overlap_duration * fs)
segments_lens = [len(wav) for wav in waveforms]
merged_waveform_len = sum(segments_lens) - overlap_len * (len(waveforms) - 1)
sum_weight = torch.zeros(merged_waveform_len, device=device, dtype=dtype)
out = torch.zeros(*shape, merged_waveform_len, device=device, dtype=dtype)
offset = 0
for frame in waveforms:
frame_length = frame.size(-1)
t = torch.linspace(0, 1, frame_length + 2, device=device, dtype=torch.float32)[
1:-1
]
weight = 0.5 - (t - 0.5).abs()
weighted_frame = frame * weight
cur = out[..., offset : offset + frame_length]
cur += weighted_frame[..., : cur.size(-1)]
out[..., offset : offset + frame_length] = cur
cur = sum_weight[offset : offset + frame_length]
cur += weight[..., : cur.size(-1)]
sum_weight[offset : offset + frame_length] = cur
offset += frame_length - overlap_len
assert sum_weight.min() > 0
merged_waveform = out / sum_weight
save_audio(output_path, merged_waveform, fs, add_silence=False, turn_up=True)
|