amarchheda's picture
inital commit
83418c6
raw
history blame
125 kB
/*
* $Id$
* Portable Audio I/O Library DirectSound implementation
*
* Authors: Phil Burk, Robert Marsanyi & Ross Bencina
* Based on the Open Source API proposed by Ross Bencina
* Copyright (c) 1999-2007 Ross Bencina, Phil Burk, Robert Marsanyi
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* The text above constitutes the entire PortAudio license; however,
* the PortAudio community also makes the following non-binding requests:
*
* Any person wishing to distribute modifications to the Software is
* requested to send the modifications to the original developer so that
* they can be incorporated into the canonical version. It is also
* requested that these non-binding requests be included along with the
* license above.
*/
/** @file
@ingroup hostapi_src
*/
/* Until May 2011 PA/DS has used a multimedia timer to perform the callback.
We're replacing this with a new implementation using a thread and a different timer mechanism.
Defining PA_WIN_DS_USE_WMME_TIMER uses the old (pre-May 2011) behavior.
*/
//#define PA_WIN_DS_USE_WMME_TIMER
#include <assert.h>
#include <stdio.h>
#include <string.h> /* strlen() */
#define _WIN32_WINNT 0x0400 /* required to get waitable timer APIs */
#include <initguid.h> /* make sure ds guids get defined */
#include <windows.h>
#include <objbase.h>
/*
Use the earliest version of DX required, no need to pollute the namespace
*/
#ifdef PAWIN_USE_DIRECTSOUNDFULLDUPLEXCREATE
#define DIRECTSOUND_VERSION 0x0800
#else
#define DIRECTSOUND_VERSION 0x0300
#endif
#include <dsound.h>
#ifdef PAWIN_USE_WDMKS_DEVICE_INFO
#include <dsconf.h>
#endif /* PAWIN_USE_WDMKS_DEVICE_INFO */
#ifndef PA_WIN_DS_USE_WMME_TIMER
#ifndef UNDER_CE
#include <process.h>
#endif
#endif
#include "pa_util.h"
#include "pa_allocation.h"
#include "pa_hostapi.h"
#include "pa_stream.h"
#include "pa_cpuload.h"
#include "pa_process.h"
#include "pa_debugprint.h"
#include "pa_win_ds.h"
#include "pa_win_ds_dynlink.h"
#include "pa_win_waveformat.h"
#include "pa_win_wdmks_utils.h"
#include "pa_win_coinitialize.h"
#if (defined(WIN32) && (defined(_MSC_VER) && (_MSC_VER >= 1200))) /* MSC version 6 and above */
#pragma comment( lib, "dsound.lib" )
#pragma comment( lib, "winmm.lib" )
#pragma comment( lib, "kernel32.lib" )
#endif
/* use CreateThread for CYGWIN, _beginthreadex for all others */
#ifndef PA_WIN_DS_USE_WMME_TIMER
#if !defined(__CYGWIN__) && !defined(UNDER_CE)
#define CREATE_THREAD (HANDLE)_beginthreadex
#undef CLOSE_THREAD_HANDLE /* as per documentation we don't call CloseHandle on a thread created with _beginthreadex */
#define PA_THREAD_FUNC static unsigned WINAPI
#define PA_THREAD_ID unsigned
#else
#define CREATE_THREAD CreateThread
#define CLOSE_THREAD_HANDLE CloseHandle
#define PA_THREAD_FUNC static DWORD WINAPI
#define PA_THREAD_ID DWORD
#endif
#if (defined(UNDER_CE))
#pragma comment(lib, "Coredll.lib")
#elif (defined(WIN32) && (defined(_MSC_VER) && (_MSC_VER >= 1200))) /* MSC version 6 and above */
#pragma comment(lib, "winmm.lib")
#endif
PA_THREAD_FUNC ProcessingThreadProc( void *pArg );
#if !defined(UNDER_CE)
#define PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT /* use waitable timer where possible, otherwise we use a WaitForSingleObject timeout */
#endif
#endif /* !PA_WIN_DS_USE_WMME_TIMER */
/*
provided in newer platform sdks and x64
*/
#ifndef DWORD_PTR
#if defined(_WIN64)
#define DWORD_PTR unsigned __int64
#else
#define DWORD_PTR unsigned long
#endif
#endif
#define PRINT(x) PA_DEBUG(x);
#define ERR_RPT(x) PRINT(x)
#define DBUG(x) PRINT(x)
#define DBUGX(x) PRINT(x)
#define PA_USE_HIGH_LATENCY (0)
#if PA_USE_HIGH_LATENCY
#define PA_DS_WIN_9X_DEFAULT_LATENCY_ (.500)
#define PA_DS_WIN_NT_DEFAULT_LATENCY_ (.600)
#else
#define PA_DS_WIN_9X_DEFAULT_LATENCY_ (.140)
#define PA_DS_WIN_NT_DEFAULT_LATENCY_ (.280)
#endif
#define PA_DS_WIN_WDM_DEFAULT_LATENCY_ (.120)
/* we allow the polling period to range between 1 and 100ms.
prior to August 2011 we limited the minimum polling period to 10ms.
*/
#define PA_DS_MINIMUM_POLLING_PERIOD_SECONDS (0.001) /* 1ms */
#define PA_DS_MAXIMUM_POLLING_PERIOD_SECONDS (0.100) /* 100ms */
#define PA_DS_POLLING_JITTER_SECONDS (0.001) /* 1ms */
#define SECONDS_PER_MSEC (0.001)
#define MSECS_PER_SECOND (1000)
/* prototypes for functions declared in this file */
#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */
PaError PaWinDs_Initialize( PaUtilHostApiRepresentation **hostApi, PaHostApiIndex index );
#ifdef __cplusplus
}
#endif /* __cplusplus */
static void Terminate( struct PaUtilHostApiRepresentation *hostApi );
static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi,
PaStream** s,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate,
unsigned long framesPerBuffer,
PaStreamFlags streamFlags,
PaStreamCallback *streamCallback,
void *userData );
static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate );
static PaError CloseStream( PaStream* stream );
static PaError StartStream( PaStream *stream );
static PaError StopStream( PaStream *stream );
static PaError AbortStream( PaStream *stream );
static PaError IsStreamStopped( PaStream *s );
static PaError IsStreamActive( PaStream *stream );
static PaTime GetStreamTime( PaStream *stream );
static double GetStreamCpuLoad( PaStream* stream );
static PaError ReadStream( PaStream* stream, void *buffer, unsigned long frames );
static PaError WriteStream( PaStream* stream, const void *buffer, unsigned long frames );
static signed long GetStreamReadAvailable( PaStream* stream );
static signed long GetStreamWriteAvailable( PaStream* stream );
/* FIXME: should convert hr to a string */
#define PA_DS_SET_LAST_DIRECTSOUND_ERROR( hr ) \
PaUtil_SetLastHostErrorInfo( paDirectSound, hr, "DirectSound error" )
/************************************************* DX Prototypes **********/
static BOOL CALLBACK CollectGUIDsProcW(LPGUID lpGUID,
LPCWSTR lpszDesc,
LPCWSTR lpszDrvName,
LPVOID lpContext );
/************************************************************************************/
/********************** Structures **************************************************/
/************************************************************************************/
/* PaWinDsHostApiRepresentation - host api datastructure specific to this implementation */
typedef struct PaWinDsDeviceInfo
{
PaDeviceInfo inheritedDeviceInfo;
GUID guid;
GUID *lpGUID;
double sampleRates[3];
char deviceInputChannelCountIsKnown; /**<< if the system returns 0xFFFF then we don't really know the number of supported channels (1=>known, 0=>unknown)*/
char deviceOutputChannelCountIsKnown; /**<< if the system returns 0xFFFF then we don't really know the number of supported channels (1=>known, 0=>unknown)*/
} PaWinDsDeviceInfo;
typedef struct
{
PaUtilHostApiRepresentation inheritedHostApiRep;
PaUtilStreamInterface callbackStreamInterface;
PaUtilStreamInterface blockingStreamInterface;
PaUtilAllocationGroup *allocations;
/* implementation specific data goes here */
PaWinUtilComInitializationResult comInitializationResult;
} PaWinDsHostApiRepresentation;
/* PaWinDsStream - a stream data structure specifically for this implementation */
typedef struct PaWinDsStream
{
PaUtilStreamRepresentation streamRepresentation;
PaUtilCpuLoadMeasurer cpuLoadMeasurer;
PaUtilBufferProcessor bufferProcessor;
/* DirectSound specific data. */
#ifdef PAWIN_USE_DIRECTSOUNDFULLDUPLEXCREATE
LPDIRECTSOUNDFULLDUPLEX8 pDirectSoundFullDuplex8;
#endif
/* Output */
LPDIRECTSOUND pDirectSound;
LPDIRECTSOUNDBUFFER pDirectSoundPrimaryBuffer;
LPDIRECTSOUNDBUFFER pDirectSoundOutputBuffer;
DWORD outputBufferWriteOffsetBytes; /* last write position */
INT outputBufferSizeBytes;
INT outputFrameSizeBytes;
/* Try to detect play buffer underflows. */
LARGE_INTEGER perfCounterTicksPerBuffer; /* counter ticks it should take to play a full buffer */
LARGE_INTEGER previousPlayTime;
DWORD previousPlayCursor;
UINT outputUnderflowCount;
BOOL outputIsRunning;
INT finalZeroBytesWritten; /* used to determine when we've flushed the whole buffer */
/* Input */
LPDIRECTSOUNDCAPTURE pDirectSoundCapture;
LPDIRECTSOUNDCAPTUREBUFFER pDirectSoundInputBuffer;
INT inputFrameSizeBytes;
UINT readOffset; /* last read position */
UINT inputBufferSizeBytes;
int hostBufferSizeFrames; /* input and output host ringbuffers have the same number of frames */
double framesWritten;
double secondsPerHostByte; /* Used to optimize latency calculation for outTime */
double pollingPeriodSeconds;
PaStreamCallbackFlags callbackFlags;
PaStreamFlags streamFlags;
int callbackResult;
HANDLE processingCompleted;
/* FIXME - move all below to PaUtilStreamRepresentation */
volatile int isStarted;
volatile int isActive;
volatile int stopProcessing; /* stop thread once existing buffers have been returned */
volatile int abortProcessing; /* stop thread immediately */
UINT systemTimerResolutionPeriodMs; /* set to 0 if we were unable to set the timer period */
#ifdef PA_WIN_DS_USE_WMME_TIMER
MMRESULT timerID;
#else
#ifdef PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT
HANDLE waitableTimer;
#endif
HANDLE processingThread;
PA_THREAD_ID processingThreadId;
HANDLE processingThreadCompleted;
#endif
} PaWinDsStream;
/* Set minimal latency based on the current OS version.
* NT has higher latency.
*/
static double PaWinDS_GetMinSystemLatencySeconds( void )
{
/*
NOTE: GetVersionEx() is deprecated as of Windows 8.1 and can not be used to reliably detect
versions of Windows higher than Windows 8 (due to manifest requirements for reporting higher versions).
Microsoft recommends switching to VerifyVersionInfo (available on Win 2k and later), however GetVersionEx
is faster, for now we just disable the deprecation warning.
See: https://msdn.microsoft.com/en-us/library/windows/desktop/ms724451(v=vs.85).aspx
See: http://www.codeproject.com/Articles/678606/Part-Overcoming-Windows-s-deprecation-of-GetVe
*/
#pragma warning (disable : 4996) /* use of GetVersionEx */
double minLatencySeconds;
/* Set minimal latency based on whether NT or other OS.
* NT has higher latency.
*/
OSVERSIONINFO osvi;
osvi.dwOSVersionInfoSize = sizeof( osvi );
GetVersionEx( &osvi );
DBUG(("PA - PlatformId = 0x%x\n", osvi.dwPlatformId ));
DBUG(("PA - MajorVersion = 0x%x\n", osvi.dwMajorVersion ));
DBUG(("PA - MinorVersion = 0x%x\n", osvi.dwMinorVersion ));
/* Check for NT */
if( (osvi.dwMajorVersion == 4) && (osvi.dwPlatformId == 2) )
{
minLatencySeconds = PA_DS_WIN_NT_DEFAULT_LATENCY_;
}
else if(osvi.dwMajorVersion >= 5)
{
minLatencySeconds = PA_DS_WIN_WDM_DEFAULT_LATENCY_;
}
else
{
minLatencySeconds = PA_DS_WIN_9X_DEFAULT_LATENCY_;
}
return minLatencySeconds;
#pragma warning (default : 4996)
}
/*************************************************************************
** Return minimum workable latency required for this host. This is returned
** As the default stream latency in PaDeviceInfo.
** Latency can be optionally set by user by setting an environment variable.
** For example, to set latency to 200 msec, put:
**
** set PA_MIN_LATENCY_MSEC=200
**
** in the AUTOEXEC.BAT file and reboot.
** If the environment variable is not set, then the latency will be determined
** based on the OS. Windows NT has higher latency than Win95.
*/
#define PA_LATENCY_ENV_NAME ("PA_MIN_LATENCY_MSEC")
#define PA_ENV_BUF_SIZE (32)
static double PaWinDs_GetMinLatencySeconds( double sampleRate )
{
char envbuf[PA_ENV_BUF_SIZE];
DWORD hresult;
double minLatencySeconds = 0;
/* Let user determine minimal latency by setting environment variable. */
hresult = GetEnvironmentVariableA( PA_LATENCY_ENV_NAME, envbuf, PA_ENV_BUF_SIZE );
if( (hresult > 0) && (hresult < PA_ENV_BUF_SIZE) )
{
minLatencySeconds = atoi( envbuf ) * SECONDS_PER_MSEC;
}
else
{
minLatencySeconds = PaWinDS_GetMinSystemLatencySeconds();
#if PA_USE_HIGH_LATENCY
PRINT(("PA - Minimum Latency set to %f msec!\n", minLatencySeconds * MSECS_PER_SECOND ));
#endif
}
return minLatencySeconds;
}
/************************************************************************************
** Duplicate and convert the input string using the group allocations allocator.
** A NULL string is converted to a zero length string.
** If memory cannot be allocated, NULL is returned.
**/
static char *DuplicateDeviceNameString( PaUtilAllocationGroup *allocations, const wchar_t* src )
{
char *result = 0;
if( src != NULL )
{
size_t len = WideCharToMultiByte(CP_UTF8, 0, src, -1, NULL, 0, NULL, NULL);
result = (char*)PaUtil_GroupAllocateMemory( allocations, (long)(len + 1) );
if( result ) {
if (WideCharToMultiByte(CP_UTF8, 0, src, -1, result, (int)len, NULL, NULL) == 0) {
result = 0;
}
}
}
else
{
result = (char*)PaUtil_GroupAllocateMemory( allocations, 1 );
if( result )
result[0] = '\0';
}
return result;
}
/************************************************************************************
** DSDeviceNameAndGUID, DSDeviceNameAndGUIDVector used for collecting preliminary
** information during device enumeration.
*/
typedef struct DSDeviceNameAndGUID{
char *name; // allocated from parent's allocations, never deleted by this structure
GUID guid;
LPGUID lpGUID;
void *pnpInterface; // wchar_t* interface path, allocated using the DS host api's allocation group
} DSDeviceNameAndGUID;
typedef struct DSDeviceNameAndGUIDVector{
PaUtilAllocationGroup *allocations;
PaError enumerationError;
int count;
int free;
DSDeviceNameAndGUID *items; // Allocated using LocalAlloc()
} DSDeviceNameAndGUIDVector;
typedef struct DSDeviceNamesAndGUIDs{
PaWinDsHostApiRepresentation *winDsHostApi;
DSDeviceNameAndGUIDVector inputNamesAndGUIDs;
DSDeviceNameAndGUIDVector outputNamesAndGUIDs;
} DSDeviceNamesAndGUIDs;
static PaError InitializeDSDeviceNameAndGUIDVector(
DSDeviceNameAndGUIDVector *guidVector, PaUtilAllocationGroup *allocations )
{
PaError result = paNoError;
guidVector->allocations = allocations;
guidVector->enumerationError = paNoError;
guidVector->count = 0;
guidVector->free = 8;
guidVector->items = (DSDeviceNameAndGUID*)LocalAlloc( LMEM_FIXED, sizeof(DSDeviceNameAndGUID) * guidVector->free );
if( guidVector->items == NULL )
result = paInsufficientMemory;
return result;
}
static PaError ExpandDSDeviceNameAndGUIDVector( DSDeviceNameAndGUIDVector *guidVector )
{
PaError result = paNoError;
DSDeviceNameAndGUID *newItems;
int i;
/* double size of vector */
int size = guidVector->count + guidVector->free;
guidVector->free += size;
newItems = (DSDeviceNameAndGUID*)LocalAlloc( LMEM_FIXED, sizeof(DSDeviceNameAndGUID) * size * 2 );
if( newItems == NULL )
{
result = paInsufficientMemory;
}
else
{
for( i=0; i < guidVector->count; ++i )
{
newItems[i].name = guidVector->items[i].name;
if( guidVector->items[i].lpGUID == NULL )
{
newItems[i].lpGUID = NULL;
}
else
{
newItems[i].lpGUID = &newItems[i].guid;
memcpy( &newItems[i].guid, guidVector->items[i].lpGUID, sizeof(GUID) );
}
newItems[i].pnpInterface = guidVector->items[i].pnpInterface;
}
LocalFree( guidVector->items );
guidVector->items = newItems;
}
return result;
}
/*
it's safe to call DSDeviceNameAndGUIDVector multiple times
*/
static PaError TerminateDSDeviceNameAndGUIDVector( DSDeviceNameAndGUIDVector *guidVector )
{
PaError result = paNoError;
if( guidVector->items != NULL )
{
if( LocalFree( guidVector->items ) != NULL )
result = paInsufficientMemory; /** @todo this isn't the correct error to return from a deallocation failure */
guidVector->items = NULL;
}
return result;
}
/************************************************************************************
** Collect preliminary device information during DirectSound enumeration
*/
static BOOL CALLBACK CollectGUIDsProcW(LPGUID lpGUID,
LPCWSTR lpszDesc,
LPCWSTR lpszDrvName,
LPVOID lpContext )
{
DSDeviceNameAndGUIDVector *namesAndGUIDs = (DSDeviceNameAndGUIDVector*)lpContext;
PaError error;
(void) lpszDrvName; /* unused variable */
if( namesAndGUIDs->free == 0 )
{
error = ExpandDSDeviceNameAndGUIDVector( namesAndGUIDs );
if( error != paNoError )
{
namesAndGUIDs->enumerationError = error;
return FALSE;
}
}
/* Set GUID pointer, copy GUID to storage in DSDeviceNameAndGUIDVector. */
if( lpGUID == NULL )
{
namesAndGUIDs->items[namesAndGUIDs->count].lpGUID = NULL;
}
else
{
namesAndGUIDs->items[namesAndGUIDs->count].lpGUID =
&namesAndGUIDs->items[namesAndGUIDs->count].guid;
memcpy( &namesAndGUIDs->items[namesAndGUIDs->count].guid, lpGUID, sizeof(GUID) );
}
namesAndGUIDs->items[namesAndGUIDs->count].name =
DuplicateDeviceNameString( namesAndGUIDs->allocations, lpszDesc );
if( namesAndGUIDs->items[namesAndGUIDs->count].name == NULL )
{
namesAndGUIDs->enumerationError = paInsufficientMemory;
return FALSE;
}
namesAndGUIDs->items[namesAndGUIDs->count].pnpInterface = 0;
++namesAndGUIDs->count;
--namesAndGUIDs->free;
return TRUE;
}
#ifdef PAWIN_USE_WDMKS_DEVICE_INFO
static void *DuplicateWCharString( PaUtilAllocationGroup *allocations, wchar_t *source )
{
size_t len;
wchar_t *result;
len = wcslen( source );
result = (wchar_t*)PaUtil_GroupAllocateMemory( allocations, (long) ((len+1) * sizeof(wchar_t)) );
wcscpy( result, source );
return result;
}
static BOOL CALLBACK KsPropertySetEnumerateCallback( PDSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_W_DATA data, LPVOID context )
{
int i;
DSDeviceNamesAndGUIDs *deviceNamesAndGUIDs = (DSDeviceNamesAndGUIDs*)context;
/*
Apparently data->Interface can be NULL in some cases.
Possibly virtual devices without hardware.
So we check for NULLs now. See mailing list message November 10, 2012:
"[Portaudio] portaudio initialization crash in KsPropertySetEnumerateCallback(pa_win_ds.c)"
*/
if( data->Interface )
{
if( data->DataFlow == DIRECTSOUNDDEVICE_DATAFLOW_RENDER )
{
for( i=0; i < deviceNamesAndGUIDs->outputNamesAndGUIDs.count; ++i )
{
if( deviceNamesAndGUIDs->outputNamesAndGUIDs.items[i].lpGUID
&& memcmp( &data->DeviceId, deviceNamesAndGUIDs->outputNamesAndGUIDs.items[i].lpGUID, sizeof(GUID) ) == 0 )
{
deviceNamesAndGUIDs->outputNamesAndGUIDs.items[i].pnpInterface =
(char*)DuplicateWCharString( deviceNamesAndGUIDs->winDsHostApi->allocations, data->Interface );
break;
}
}
}
else if( data->DataFlow == DIRECTSOUNDDEVICE_DATAFLOW_CAPTURE )
{
for( i=0; i < deviceNamesAndGUIDs->inputNamesAndGUIDs.count; ++i )
{
if( deviceNamesAndGUIDs->inputNamesAndGUIDs.items[i].lpGUID
&& memcmp( &data->DeviceId, deviceNamesAndGUIDs->inputNamesAndGUIDs.items[i].lpGUID, sizeof(GUID) ) == 0 )
{
deviceNamesAndGUIDs->inputNamesAndGUIDs.items[i].pnpInterface =
(char*)DuplicateWCharString( deviceNamesAndGUIDs->winDsHostApi->allocations, data->Interface );
break;
}
}
}
}
return TRUE;
}
static GUID pawin_CLSID_DirectSoundPrivate =
{ 0x11ab3ec0, 0x25ec, 0x11d1, 0xa4, 0xd8, 0x00, 0xc0, 0x4f, 0xc2, 0x8a, 0xca };
static GUID pawin_DSPROPSETID_DirectSoundDevice =
{ 0x84624f82, 0x25ec, 0x11d1, 0xa4, 0xd8, 0x00, 0xc0, 0x4f, 0xc2, 0x8a, 0xca };
static GUID pawin_IID_IKsPropertySet =
{ 0x31efac30, 0x515c, 0x11d0, 0xa9, 0xaa, 0x00, 0xaa, 0x00, 0x61, 0xbe, 0x93 };
/*
FindDevicePnpInterfaces fills in the pnpInterface fields in deviceNamesAndGUIDs
with UNICODE file paths to the devices. The DS documentation mentions
at least two techniques by which these Interface paths can be found using IKsPropertySet on
the DirectSound class object. One is using the DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION
property, and the other is using DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE.
I tried both methods and only the second worked. I found two postings on the
net from people who had the same problem with the first method, so I think the method used here is
more common/likely to work. The problem is that IKsPropertySet_Get returns S_OK
but the fields of the device description are not filled in.
The mechanism we use works by registering an enumeration callback which is called for
every DSound device. Our callback searches for a device in our deviceNamesAndGUIDs list
with the matching GUID and copies the pointer to the Interface path.
Note that we could have used this enumeration callback to perform the original
device enumeration, however we choose not to so we can disable this step easily.
Apparently the IKsPropertySet mechanism was added in DirectSound 9c 2004
http://www.tech-archive.net/Archive/Development/microsoft.public.win32.programmer.mmedia/2004-12/0099.html
-- rossb
*/
static void FindDevicePnpInterfaces( DSDeviceNamesAndGUIDs *deviceNamesAndGUIDs )
{
IClassFactory *pClassFactory;
if( paWinDsDSoundEntryPoints.DllGetClassObject(&pawin_CLSID_DirectSoundPrivate, &IID_IClassFactory, (PVOID *) &pClassFactory) == S_OK ){
IKsPropertySet *pPropertySet;
if( pClassFactory->lpVtbl->CreateInstance( pClassFactory, NULL, &pawin_IID_IKsPropertySet, (PVOID *) &pPropertySet) == S_OK ){
DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE_W_DATA data;
ULONG bytesReturned;
data.Callback = KsPropertySetEnumerateCallback;
data.Context = deviceNamesAndGUIDs;
IKsPropertySet_Get( pPropertySet,
&pawin_DSPROPSETID_DirectSoundDevice,
DSPROPERTY_DIRECTSOUNDDEVICE_ENUMERATE_W,
NULL,
0,
&data,
sizeof(data),
&bytesReturned
);
IKsPropertySet_Release( pPropertySet );
}
pClassFactory->lpVtbl->Release( pClassFactory );
}
/*
The following code fragment, which I chose not to use, queries for the
device interface for a device with a specific GUID:
ULONG BytesReturned;
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_W_DATA Property;
memset (&Property, 0, sizeof(Property));
Property.DataFlow = DIRECTSOUNDDEVICE_DATAFLOW_RENDER;
Property.DeviceId = *lpGUID;
hr = IKsPropertySet_Get( pPropertySet,
&pawin_DSPROPSETID_DirectSoundDevice,
DSPROPERTY_DIRECTSOUNDDEVICE_DESCRIPTION_W,
NULL,
0,
&Property,
sizeof(Property),
&BytesReturned
);
if( hr == S_OK )
{
//pnpInterface = Property.Interface;
}
*/
}
#endif /* PAWIN_USE_WDMKS_DEVICE_INFO */
/*
GUIDs for emulated devices which we blacklist below.
are there more than two of them??
*/
GUID IID_IRolandVSCEmulated1 = {0xc2ad1800, 0xb243, 0x11ce, 0xa8, 0xa4, 0x00, 0xaa, 0x00, 0x6c, 0x45, 0x01};
GUID IID_IRolandVSCEmulated2 = {0xc2ad1800, 0xb243, 0x11ce, 0xa8, 0xa4, 0x00, 0xaa, 0x00, 0x6c, 0x45, 0x02};
#define PA_DEFAULTSAMPLERATESEARCHORDER_COUNT_ (13) /* must match array length below */
static double defaultSampleRateSearchOrder_[] =
{ 44100.0, 48000.0, 32000.0, 24000.0, 22050.0, 88200.0, 96000.0, 192000.0,
16000.0, 12000.0, 11025.0, 9600.0, 8000.0 };
/************************************************************************************
** Extract capabilities from an output device, and add it to the device info list
** if successful. This function assumes that there is enough room in the
** device info list to accommodate all entries.
**
** The device will not be added to the device list if any errors are encountered.
*/
static PaError AddOutputDeviceInfoFromDirectSound(
PaWinDsHostApiRepresentation *winDsHostApi, char *name, LPGUID lpGUID, char *pnpInterface )
{
PaUtilHostApiRepresentation *hostApi = &winDsHostApi->inheritedHostApiRep;
PaWinDsDeviceInfo *winDsDeviceInfo = (PaWinDsDeviceInfo*) hostApi->deviceInfos[hostApi->info.deviceCount];
PaDeviceInfo *deviceInfo = &winDsDeviceInfo->inheritedDeviceInfo;
HRESULT hr;
LPDIRECTSOUND lpDirectSound;
DSCAPS caps;
int deviceOK = TRUE;
PaError result = paNoError;
int i;
/* Copy GUID to the device info structure. Set pointer. */
if( lpGUID == NULL )
{
winDsDeviceInfo->lpGUID = NULL;
}
else
{
memcpy( &winDsDeviceInfo->guid, lpGUID, sizeof(GUID) );
winDsDeviceInfo->lpGUID = &winDsDeviceInfo->guid;
}
if( lpGUID )
{
if (IsEqualGUID (&IID_IRolandVSCEmulated1,lpGUID) ||
IsEqualGUID (&IID_IRolandVSCEmulated2,lpGUID) )
{
PA_DEBUG(("BLACKLISTED: %s \n",name));
return paNoError;
}
}
/* Create a DirectSound object for the specified GUID
Note that using CoCreateInstance doesn't work on windows CE.
*/
hr = paWinDsDSoundEntryPoints.DirectSoundCreate( lpGUID, &lpDirectSound, NULL );
/** try using CoCreateInstance because DirectSoundCreate was hanging under
some circumstances - note this was probably related to the
#define BOOL short bug which has now been fixed
@todo delete this comment and the following code once we've ensured
there is no bug.
*/
/*
hr = CoCreateInstance( &CLSID_DirectSound, NULL, CLSCTX_INPROC_SERVER,
&IID_IDirectSound, (void**)&lpDirectSound );
if( hr == S_OK )
{
hr = IDirectSound_Initialize( lpDirectSound, lpGUID );
}
*/
if( hr != DS_OK )
{
if (hr == DSERR_ALLOCATED)
PA_DEBUG(("AddOutputDeviceInfoFromDirectSound %s DSERR_ALLOCATED\n",name));
DBUG(("Cannot create DirectSound for %s. Result = 0x%x\n", name, hr ));
if (lpGUID)
DBUG(("%s's GUID: {0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x, 0x%x} \n",
name,
lpGUID->Data1,
lpGUID->Data2,
lpGUID->Data3,
lpGUID->Data4[0],
lpGUID->Data4[1],
lpGUID->Data4[2],
lpGUID->Data4[3],
lpGUID->Data4[4],
lpGUID->Data4[5],
lpGUID->Data4[6],
lpGUID->Data4[7]));
deviceOK = FALSE;
}
else
{
/* Query device characteristics. */
memset( &caps, 0, sizeof(caps) );
caps.dwSize = sizeof(caps);
hr = IDirectSound_GetCaps( lpDirectSound, &caps );
if( hr != DS_OK )
{
DBUG(("Cannot GetCaps() for DirectSound device %s. Result = 0x%x\n", name, hr ));
deviceOK = FALSE;
}
else
{
#if PA_USE_WMME
if( caps.dwFlags & DSCAPS_EMULDRIVER )
{
/* If WMME supported, then reject Emulated drivers because they are lousy. */
deviceOK = FALSE;
}
#endif
if( deviceOK )
{
deviceInfo->maxInputChannels = 0;
winDsDeviceInfo->deviceInputChannelCountIsKnown = 1;
/* DS output capabilities only indicate supported number of channels
using two flags which indicate mono and/or stereo.
We assume that stereo devices may support more than 2 channels
(as is the case with 5.1 devices for example) and so
set deviceOutputChannelCountIsKnown to 0 (unknown).
In this case OpenStream will try to open the device
when the user requests more than 2 channels, rather than
returning an error.
*/
if( caps.dwFlags & DSCAPS_PRIMARYSTEREO )
{
deviceInfo->maxOutputChannels = 2;
winDsDeviceInfo->deviceOutputChannelCountIsKnown = 0;
}
else
{
deviceInfo->maxOutputChannels = 1;
winDsDeviceInfo->deviceOutputChannelCountIsKnown = 1;
}
/* Guess channels count from speaker configuration. We do it only when
pnpInterface is NULL or when PAWIN_USE_WDMKS_DEVICE_INFO is undefined.
*/
#ifdef PAWIN_USE_WDMKS_DEVICE_INFO
if( !pnpInterface )
#endif
{
DWORD spkrcfg;
if( SUCCEEDED(IDirectSound_GetSpeakerConfig( lpDirectSound, &spkrcfg )) )
{
int count = 0;
switch (DSSPEAKER_CONFIG(spkrcfg))
{
case DSSPEAKER_HEADPHONE: count = 2; break;
case DSSPEAKER_MONO: count = 1; break;
case DSSPEAKER_QUAD: count = 4; break;
case DSSPEAKER_STEREO: count = 2; break;
case DSSPEAKER_SURROUND: count = 4; break;
case DSSPEAKER_5POINT1: count = 6; break;
#ifndef DSSPEAKER_7POINT1
#define DSSPEAKER_7POINT1 0x00000007
#endif
case DSSPEAKER_7POINT1: count = 8; break;
#ifndef DSSPEAKER_7POINT1_SURROUND
#define DSSPEAKER_7POINT1_SURROUND 0x00000008
#endif
case DSSPEAKER_7POINT1_SURROUND: count = 8; break;
#ifndef DSSPEAKER_5POINT1_SURROUND
#define DSSPEAKER_5POINT1_SURROUND 0x00000009
#endif
case DSSPEAKER_5POINT1_SURROUND: count = 6; break;
}
if( count )
{
deviceInfo->maxOutputChannels = count;
winDsDeviceInfo->deviceOutputChannelCountIsKnown = 1;
}
}
}
#ifdef PAWIN_USE_WDMKS_DEVICE_INFO
if( pnpInterface )
{
int count = PaWin_WDMKS_QueryFilterMaximumChannelCount( pnpInterface, /* isInput= */ 0 );
if( count > 0 )
{
deviceInfo->maxOutputChannels = count;
winDsDeviceInfo->deviceOutputChannelCountIsKnown = 1;
}
}
#endif /* PAWIN_USE_WDMKS_DEVICE_INFO */
/* initialize defaultSampleRate */
if( caps.dwFlags & DSCAPS_CONTINUOUSRATE )
{
/* initialize to caps.dwMaxSecondarySampleRate incase none of the standard rates match */
deviceInfo->defaultSampleRate = caps.dwMaxSecondarySampleRate;
for( i = 0; i < PA_DEFAULTSAMPLERATESEARCHORDER_COUNT_; ++i )
{
if( defaultSampleRateSearchOrder_[i] >= caps.dwMinSecondarySampleRate
&& defaultSampleRateSearchOrder_[i] <= caps.dwMaxSecondarySampleRate )
{
deviceInfo->defaultSampleRate = defaultSampleRateSearchOrder_[i];
break;
}
}
}
else if( caps.dwMinSecondarySampleRate == caps.dwMaxSecondarySampleRate )
{
if( caps.dwMinSecondarySampleRate == 0 )
{
/*
** On my Thinkpad 380Z, DirectSoundV6 returns min-max=0 !!
** But it supports continuous sampling.
** So fake range of rates, and hope it really supports it.
*/
deviceInfo->defaultSampleRate = 48000.0f; /* assume 48000 as the default */
DBUG(("PA - Reported rates both zero. Setting to fake values for device #%s\n", name ));
}
else
{
deviceInfo->defaultSampleRate = caps.dwMaxSecondarySampleRate;
}
}
else if( (caps.dwMinSecondarySampleRate < 1000.0) && (caps.dwMaxSecondarySampleRate > 50000.0) )
{
/* The EWS88MT drivers lie, lie, lie. The say they only support two rates, 100 & 100000.
** But we know that they really support a range of rates!
** So when we see a ridiculous set of rates, assume it is a range.
*/
deviceInfo->defaultSampleRate = 48000.0f; /* assume 48000 as the default */
DBUG(("PA - Sample rate range used instead of two odd values for device #%s\n", name ));
}
else deviceInfo->defaultSampleRate = caps.dwMaxSecondarySampleRate;
//printf( "min %d max %d\n", caps.dwMinSecondarySampleRate, caps.dwMaxSecondarySampleRate );
// dwFlags | DSCAPS_CONTINUOUSRATE
deviceInfo->defaultLowInputLatency = 0.;
deviceInfo->defaultHighInputLatency = 0.;
deviceInfo->defaultLowOutputLatency = PaWinDs_GetMinLatencySeconds( deviceInfo->defaultSampleRate );
deviceInfo->defaultHighOutputLatency = deviceInfo->defaultLowOutputLatency * 2;
}
}
IDirectSound_Release( lpDirectSound );
}
if( deviceOK )
{
deviceInfo->name = name;
if( lpGUID == NULL )
hostApi->info.defaultOutputDevice = hostApi->info.deviceCount;
hostApi->info.deviceCount++;
}
return result;
}
/************************************************************************************
** Extract capabilities from an input device, and add it to the device info list
** if successful. This function assumes that there is enough room in the
** device info list to accommodate all entries.
**
** The device will not be added to the device list if any errors are encountered.
*/
static PaError AddInputDeviceInfoFromDirectSoundCapture(
PaWinDsHostApiRepresentation *winDsHostApi, char *name, LPGUID lpGUID, char *pnpInterface )
{
PaUtilHostApiRepresentation *hostApi = &winDsHostApi->inheritedHostApiRep;
PaWinDsDeviceInfo *winDsDeviceInfo = (PaWinDsDeviceInfo*) hostApi->deviceInfos[hostApi->info.deviceCount];
PaDeviceInfo *deviceInfo = &winDsDeviceInfo->inheritedDeviceInfo;
HRESULT hr;
LPDIRECTSOUNDCAPTURE lpDirectSoundCapture;
DSCCAPS caps;
int deviceOK = TRUE;
PaError result = paNoError;
/* Copy GUID to the device info structure. Set pointer. */
if( lpGUID == NULL )
{
winDsDeviceInfo->lpGUID = NULL;
}
else
{
winDsDeviceInfo->lpGUID = &winDsDeviceInfo->guid;
memcpy( &winDsDeviceInfo->guid, lpGUID, sizeof(GUID) );
}
hr = paWinDsDSoundEntryPoints.DirectSoundCaptureCreate( lpGUID, &lpDirectSoundCapture, NULL );
/** try using CoCreateInstance because DirectSoundCreate was hanging under
some circumstances - note this was probably related to the
#define BOOL short bug which has now been fixed
@todo delete this comment and the following code once we've ensured
there is no bug.
*/
/*
hr = CoCreateInstance( &CLSID_DirectSoundCapture, NULL, CLSCTX_INPROC_SERVER,
&IID_IDirectSoundCapture, (void**)&lpDirectSoundCapture );
*/
if( hr != DS_OK )
{
DBUG(("Cannot create Capture for %s. Result = 0x%x\n", name, hr ));
deviceOK = FALSE;
}
else
{
/* Query device characteristics. */
memset( &caps, 0, sizeof(caps) );
caps.dwSize = sizeof(caps);
hr = IDirectSoundCapture_GetCaps( lpDirectSoundCapture, &caps );
if( hr != DS_OK )
{
DBUG(("Cannot GetCaps() for Capture device %s. Result = 0x%x\n", name, hr ));
deviceOK = FALSE;
}
else
{
#if PA_USE_WMME
if( caps.dwFlags & DSCAPS_EMULDRIVER )
{
/* If WMME supported, then reject Emulated drivers because they are lousy. */
deviceOK = FALSE;
}
#endif
if( deviceOK )
{
deviceInfo->maxInputChannels = caps.dwChannels;
winDsDeviceInfo->deviceInputChannelCountIsKnown = 1;
deviceInfo->maxOutputChannels = 0;
winDsDeviceInfo->deviceOutputChannelCountIsKnown = 1;
#ifdef PAWIN_USE_WDMKS_DEVICE_INFO
if( pnpInterface )
{
int count = PaWin_WDMKS_QueryFilterMaximumChannelCount( pnpInterface, /* isInput= */ 1 );
if( count > 0 )
{
deviceInfo->maxInputChannels = count;
winDsDeviceInfo->deviceInputChannelCountIsKnown = 1;
}
}
#endif /* PAWIN_USE_WDMKS_DEVICE_INFO */
/* constants from a WINE patch by Francois Gouget, see:
http://www.winehq.com/hypermail/wine-patches/2003/01/0290.html
---
Date: Fri, 14 May 2004 10:38:12 +0200 (CEST)
From: Francois Gouget <fgouget@ ... .fr>
To: Ross Bencina <rbencina@ ... .au>
Subject: Re: Permission to use wine 48/96 wave patch in BSD licensed library
[snip]
I give you permission to use the patch below under the BSD license.
http://www.winehq.com/hypermail/wine-patches/2003/01/0290.html
[snip]
*/
#ifndef WAVE_FORMAT_48M08
#define WAVE_FORMAT_48M08 0x00001000 /* 48 kHz, Mono, 8-bit */
#define WAVE_FORMAT_48S08 0x00002000 /* 48 kHz, Stereo, 8-bit */
#define WAVE_FORMAT_48M16 0x00004000 /* 48 kHz, Mono, 16-bit */
#define WAVE_FORMAT_48S16 0x00008000 /* 48 kHz, Stereo, 16-bit */
#define WAVE_FORMAT_96M08 0x00010000 /* 96 kHz, Mono, 8-bit */
#define WAVE_FORMAT_96S08 0x00020000 /* 96 kHz, Stereo, 8-bit */
#define WAVE_FORMAT_96M16 0x00040000 /* 96 kHz, Mono, 16-bit */
#define WAVE_FORMAT_96S16 0x00080000 /* 96 kHz, Stereo, 16-bit */
#endif
/* defaultSampleRate */
if( caps.dwChannels == 2 )
{
if( caps.dwFormats & WAVE_FORMAT_4S16 )
deviceInfo->defaultSampleRate = 44100.0;
else if( caps.dwFormats & WAVE_FORMAT_48S16 )
deviceInfo->defaultSampleRate = 48000.0;
else if( caps.dwFormats & WAVE_FORMAT_2S16 )
deviceInfo->defaultSampleRate = 22050.0;
else if( caps.dwFormats & WAVE_FORMAT_1S16 )
deviceInfo->defaultSampleRate = 11025.0;
else if( caps.dwFormats & WAVE_FORMAT_96S16 )
deviceInfo->defaultSampleRate = 96000.0;
else
deviceInfo->defaultSampleRate = 48000.0; /* assume 48000 as the default */
}
else if( caps.dwChannels == 1 )
{
if( caps.dwFormats & WAVE_FORMAT_4M16 )
deviceInfo->defaultSampleRate = 44100.0;
else if( caps.dwFormats & WAVE_FORMAT_48M16 )
deviceInfo->defaultSampleRate = 48000.0;
else if( caps.dwFormats & WAVE_FORMAT_2M16 )
deviceInfo->defaultSampleRate = 22050.0;
else if( caps.dwFormats & WAVE_FORMAT_1M16 )
deviceInfo->defaultSampleRate = 11025.0;
else if( caps.dwFormats & WAVE_FORMAT_96M16 )
deviceInfo->defaultSampleRate = 96000.0;
else
deviceInfo->defaultSampleRate = 48000.0; /* assume 48000 as the default */
}
else deviceInfo->defaultSampleRate = 48000.0; /* assume 48000 as the default */
deviceInfo->defaultLowInputLatency = PaWinDs_GetMinLatencySeconds( deviceInfo->defaultSampleRate );
deviceInfo->defaultHighInputLatency = deviceInfo->defaultLowInputLatency * 2;
deviceInfo->defaultLowOutputLatency = 0.;
deviceInfo->defaultHighOutputLatency = 0.;
}
}
IDirectSoundCapture_Release( lpDirectSoundCapture );
}
if( deviceOK )
{
deviceInfo->name = name;
if( lpGUID == NULL )
hostApi->info.defaultInputDevice = hostApi->info.deviceCount;
hostApi->info.deviceCount++;
}
return result;
}
/***********************************************************************************/
PaError PaWinDs_Initialize( PaUtilHostApiRepresentation **hostApi, PaHostApiIndex hostApiIndex )
{
PaError result = paNoError;
int i, deviceCount;
PaWinDsHostApiRepresentation *winDsHostApi;
DSDeviceNamesAndGUIDs deviceNamesAndGUIDs;
PaWinDsDeviceInfo *deviceInfoArray;
PaWinDs_InitializeDSoundEntryPoints();
/* initialise guid vectors so they can be safely deleted on error */
deviceNamesAndGUIDs.winDsHostApi = NULL;
deviceNamesAndGUIDs.inputNamesAndGUIDs.items = NULL;
deviceNamesAndGUIDs.outputNamesAndGUIDs.items = NULL;
winDsHostApi = (PaWinDsHostApiRepresentation*)PaUtil_AllocateMemory( sizeof(PaWinDsHostApiRepresentation) );
if( !winDsHostApi )
{
result = paInsufficientMemory;
goto error;
}
memset( winDsHostApi, 0, sizeof(PaWinDsHostApiRepresentation) ); /* ensure all fields are zeroed. especially winDsHostApi->allocations */
result = PaWinUtil_CoInitialize( paDirectSound, &winDsHostApi->comInitializationResult );
if( result != paNoError )
{
goto error;
}
winDsHostApi->allocations = PaUtil_CreateAllocationGroup();
if( !winDsHostApi->allocations )
{
result = paInsufficientMemory;
goto error;
}
*hostApi = &winDsHostApi->inheritedHostApiRep;
(*hostApi)->info.structVersion = 1;
(*hostApi)->info.type = paDirectSound;
(*hostApi)->info.name = "Windows DirectSound";
(*hostApi)->info.deviceCount = 0;
(*hostApi)->info.defaultInputDevice = paNoDevice;
(*hostApi)->info.defaultOutputDevice = paNoDevice;
/* DSound - enumerate devices to count them and to gather their GUIDs */
result = InitializeDSDeviceNameAndGUIDVector( &deviceNamesAndGUIDs.inputNamesAndGUIDs, winDsHostApi->allocations );
if( result != paNoError )
goto error;
result = InitializeDSDeviceNameAndGUIDVector( &deviceNamesAndGUIDs.outputNamesAndGUIDs, winDsHostApi->allocations );
if( result != paNoError )
goto error;
paWinDsDSoundEntryPoints.DirectSoundCaptureEnumerateW( (LPDSENUMCALLBACKW)CollectGUIDsProcW, (void *)&deviceNamesAndGUIDs.inputNamesAndGUIDs );
paWinDsDSoundEntryPoints.DirectSoundEnumerateW( (LPDSENUMCALLBACKW)CollectGUIDsProcW, (void *)&deviceNamesAndGUIDs.outputNamesAndGUIDs );
if( deviceNamesAndGUIDs.inputNamesAndGUIDs.enumerationError != paNoError )
{
result = deviceNamesAndGUIDs.inputNamesAndGUIDs.enumerationError;
goto error;
}
if( deviceNamesAndGUIDs.outputNamesAndGUIDs.enumerationError != paNoError )
{
result = deviceNamesAndGUIDs.outputNamesAndGUIDs.enumerationError;
goto error;
}
deviceCount = deviceNamesAndGUIDs.inputNamesAndGUIDs.count + deviceNamesAndGUIDs.outputNamesAndGUIDs.count;
#ifdef PAWIN_USE_WDMKS_DEVICE_INFO
if( deviceCount > 0 )
{
deviceNamesAndGUIDs.winDsHostApi = winDsHostApi;
FindDevicePnpInterfaces( &deviceNamesAndGUIDs );
}
#endif /* PAWIN_USE_WDMKS_DEVICE_INFO */
if( deviceCount > 0 )
{
/* allocate array for pointers to PaDeviceInfo structs */
(*hostApi)->deviceInfos = (PaDeviceInfo**)PaUtil_GroupAllocateMemory(
winDsHostApi->allocations, sizeof(PaDeviceInfo*) * deviceCount );
if( !(*hostApi)->deviceInfos )
{
result = paInsufficientMemory;
goto error;
}
/* allocate all PaDeviceInfo structs in a contiguous block */
deviceInfoArray = (PaWinDsDeviceInfo*)PaUtil_GroupAllocateMemory(
winDsHostApi->allocations, sizeof(PaWinDsDeviceInfo) * deviceCount );
if( !deviceInfoArray )
{
result = paInsufficientMemory;
goto error;
}
for( i=0; i < deviceCount; ++i )
{
PaDeviceInfo *deviceInfo = &deviceInfoArray[i].inheritedDeviceInfo;
deviceInfo->structVersion = 2;
deviceInfo->hostApi = hostApiIndex;
deviceInfo->name = 0;
(*hostApi)->deviceInfos[i] = deviceInfo;
}
for( i=0; i < deviceNamesAndGUIDs.inputNamesAndGUIDs.count; ++i )
{
result = AddInputDeviceInfoFromDirectSoundCapture( winDsHostApi,
deviceNamesAndGUIDs.inputNamesAndGUIDs.items[i].name,
deviceNamesAndGUIDs.inputNamesAndGUIDs.items[i].lpGUID,
deviceNamesAndGUIDs.inputNamesAndGUIDs.items[i].pnpInterface );
if( result != paNoError )
goto error;
}
for( i=0; i < deviceNamesAndGUIDs.outputNamesAndGUIDs.count; ++i )
{
result = AddOutputDeviceInfoFromDirectSound( winDsHostApi,
deviceNamesAndGUIDs.outputNamesAndGUIDs.items[i].name,
deviceNamesAndGUIDs.outputNamesAndGUIDs.items[i].lpGUID,
deviceNamesAndGUIDs.outputNamesAndGUIDs.items[i].pnpInterface );
if( result != paNoError )
goto error;
}
}
result = TerminateDSDeviceNameAndGUIDVector( &deviceNamesAndGUIDs.inputNamesAndGUIDs );
if( result != paNoError )
goto error;
result = TerminateDSDeviceNameAndGUIDVector( &deviceNamesAndGUIDs.outputNamesAndGUIDs );
if( result != paNoError )
goto error;
(*hostApi)->Terminate = Terminate;
(*hostApi)->OpenStream = OpenStream;
(*hostApi)->IsFormatSupported = IsFormatSupported;
PaUtil_InitializeStreamInterface( &winDsHostApi->callbackStreamInterface, CloseStream, StartStream,
StopStream, AbortStream, IsStreamStopped, IsStreamActive,
GetStreamTime, GetStreamCpuLoad,
PaUtil_DummyRead, PaUtil_DummyWrite,
PaUtil_DummyGetReadAvailable, PaUtil_DummyGetWriteAvailable );
PaUtil_InitializeStreamInterface( &winDsHostApi->blockingStreamInterface, CloseStream, StartStream,
StopStream, AbortStream, IsStreamStopped, IsStreamActive,
GetStreamTime, PaUtil_DummyGetCpuLoad,
ReadStream, WriteStream, GetStreamReadAvailable, GetStreamWriteAvailable );
return result;
error:
TerminateDSDeviceNameAndGUIDVector( &deviceNamesAndGUIDs.inputNamesAndGUIDs );
TerminateDSDeviceNameAndGUIDVector( &deviceNamesAndGUIDs.outputNamesAndGUIDs );
Terminate( (struct PaUtilHostApiRepresentation *)winDsHostApi );
return result;
}
/***********************************************************************************/
static void Terminate( struct PaUtilHostApiRepresentation *hostApi )
{
PaWinDsHostApiRepresentation *winDsHostApi = (PaWinDsHostApiRepresentation*)hostApi;
if( winDsHostApi ){
if( winDsHostApi->allocations )
{
PaUtil_FreeAllAllocations( winDsHostApi->allocations );
PaUtil_DestroyAllocationGroup( winDsHostApi->allocations );
}
PaWinUtil_CoUninitialize( paDirectSound, &winDsHostApi->comInitializationResult );
PaUtil_FreeMemory( winDsHostApi );
}
PaWinDs_TerminateDSoundEntryPoints();
}
static PaError ValidateWinDirectSoundSpecificStreamInfo(
const PaStreamParameters *streamParameters,
const PaWinDirectSoundStreamInfo *streamInfo )
{
if( streamInfo )
{
if( streamInfo->size != sizeof( PaWinDirectSoundStreamInfo )
|| streamInfo->version != 2 )
{
return paIncompatibleHostApiSpecificStreamInfo;
}
if( streamInfo->flags & paWinDirectSoundUseLowLevelLatencyParameters )
{
if( streamInfo->framesPerBuffer <= 0 )
return paIncompatibleHostApiSpecificStreamInfo;
}
}
return paNoError;
}
/***********************************************************************************/
static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate )
{
PaError result;
PaWinDsDeviceInfo *inputWinDsDeviceInfo, *outputWinDsDeviceInfo;
PaDeviceInfo *inputDeviceInfo, *outputDeviceInfo;
int inputChannelCount, outputChannelCount;
PaSampleFormat inputSampleFormat, outputSampleFormat;
PaWinDirectSoundStreamInfo *inputStreamInfo, *outputStreamInfo;
if( inputParameters )
{
inputWinDsDeviceInfo = (PaWinDsDeviceInfo*) hostApi->deviceInfos[ inputParameters->device ];
inputDeviceInfo = &inputWinDsDeviceInfo->inheritedDeviceInfo;
inputChannelCount = inputParameters->channelCount;
inputSampleFormat = inputParameters->sampleFormat;
/* unless alternate device specification is supported, reject the use of
paUseHostApiSpecificDeviceSpecification */
if( inputParameters->device == paUseHostApiSpecificDeviceSpecification )
return paInvalidDevice;
/* check that input device can support inputChannelCount */
if( inputWinDsDeviceInfo->deviceInputChannelCountIsKnown
&& inputChannelCount > inputDeviceInfo->maxInputChannels )
return paInvalidChannelCount;
/* validate inputStreamInfo */
inputStreamInfo = (PaWinDirectSoundStreamInfo*)inputParameters->hostApiSpecificStreamInfo;
result = ValidateWinDirectSoundSpecificStreamInfo( inputParameters, inputStreamInfo );
if( result != paNoError ) return result;
}
else
{
inputChannelCount = 0;
}
if( outputParameters )
{
outputWinDsDeviceInfo = (PaWinDsDeviceInfo*) hostApi->deviceInfos[ outputParameters->device ];
outputDeviceInfo = &outputWinDsDeviceInfo->inheritedDeviceInfo;
outputChannelCount = outputParameters->channelCount;
outputSampleFormat = outputParameters->sampleFormat;
/* unless alternate device specification is supported, reject the use of
paUseHostApiSpecificDeviceSpecification */
if( outputParameters->device == paUseHostApiSpecificDeviceSpecification )
return paInvalidDevice;
/* check that output device can support inputChannelCount */
if( outputWinDsDeviceInfo->deviceOutputChannelCountIsKnown
&& outputChannelCount > outputDeviceInfo->maxOutputChannels )
return paInvalidChannelCount;
/* validate outputStreamInfo */
outputStreamInfo = (PaWinDirectSoundStreamInfo*)outputParameters->hostApiSpecificStreamInfo;
result = ValidateWinDirectSoundSpecificStreamInfo( outputParameters, outputStreamInfo );
if( result != paNoError ) return result;
}
else
{
outputChannelCount = 0;
}
/*
IMPLEMENT ME:
- if a full duplex stream is requested, check that the combination
of input and output parameters is supported if necessary
- check that the device supports sampleRate
Because the buffer adapter handles conversion between all standard
sample formats, the following checks are only required if paCustomFormat
is implemented, or under some other unusual conditions.
- check that input device can support inputSampleFormat, or that
we have the capability to convert from outputSampleFormat to
a native format
- check that output device can support outputSampleFormat, or that
we have the capability to convert from outputSampleFormat to
a native format
*/
return paFormatIsSupported;
}
#ifdef PAWIN_USE_DIRECTSOUNDFULLDUPLEXCREATE
static HRESULT InitFullDuplexInputOutputBuffers( PaWinDsStream *stream,
PaWinDsDeviceInfo *inputDevice,
PaSampleFormat hostInputSampleFormat,
WORD inputChannelCount,
int bytesPerInputBuffer,
PaWinWaveFormatChannelMask inputChannelMask,
PaWinDsDeviceInfo *outputDevice,
PaSampleFormat hostOutputSampleFormat,
WORD outputChannelCount,
int bytesPerOutputBuffer,
PaWinWaveFormatChannelMask outputChannelMask,
unsigned long nFrameRate
)
{
HRESULT hr;
DSCBUFFERDESC captureDesc;
PaWinWaveFormat captureWaveFormat;
DSBUFFERDESC secondaryRenderDesc;
PaWinWaveFormat renderWaveFormat;
LPDIRECTSOUNDBUFFER8 pRenderBuffer8;
LPDIRECTSOUNDCAPTUREBUFFER8 pCaptureBuffer8;
// capture buffer description
// only try wave format extensible. assume it's available on all ds 8 systems
PaWin_InitializeWaveFormatExtensible( &captureWaveFormat, inputChannelCount,
hostInputSampleFormat, PaWin_SampleFormatToLinearWaveFormatTag( hostInputSampleFormat ),
nFrameRate, inputChannelMask );
ZeroMemory(&captureDesc, sizeof(DSCBUFFERDESC));
captureDesc.dwSize = sizeof(DSCBUFFERDESC);
captureDesc.dwFlags = 0;
captureDesc.dwBufferBytes = bytesPerInputBuffer;
captureDesc.lpwfxFormat = (WAVEFORMATEX*)&captureWaveFormat;
// render buffer description
PaWin_InitializeWaveFormatExtensible( &renderWaveFormat, outputChannelCount,
hostOutputSampleFormat, PaWin_SampleFormatToLinearWaveFormatTag( hostOutputSampleFormat ),
nFrameRate, outputChannelMask );
ZeroMemory(&secondaryRenderDesc, sizeof(DSBUFFERDESC));
secondaryRenderDesc.dwSize = sizeof(DSBUFFERDESC);
secondaryRenderDesc.dwFlags = DSBCAPS_GLOBALFOCUS | DSBCAPS_GETCURRENTPOSITION2;
secondaryRenderDesc.dwBufferBytes = bytesPerOutputBuffer;
secondaryRenderDesc.lpwfxFormat = (WAVEFORMATEX*)&renderWaveFormat;
/* note that we don't create a primary buffer here at all */
hr = paWinDsDSoundEntryPoints.DirectSoundFullDuplexCreate8(
inputDevice->lpGUID, outputDevice->lpGUID,
&captureDesc, &secondaryRenderDesc,
GetDesktopWindow(), /* see InitOutputBuffer() for a discussion of whether this is a good idea */
DSSCL_EXCLUSIVE,
&stream->pDirectSoundFullDuplex8,
&pCaptureBuffer8,
&pRenderBuffer8,
NULL /* pUnkOuter must be NULL */
);
if( hr == DS_OK )
{
PA_DEBUG(("DirectSoundFullDuplexCreate succeeded!\n"));
/* retrieve the pre ds 8 buffer interfaces which are used by the rest of the code */
hr = IUnknown_QueryInterface( pCaptureBuffer8, &IID_IDirectSoundCaptureBuffer, (LPVOID *)&stream->pDirectSoundInputBuffer );
if( hr == DS_OK )
hr = IUnknown_QueryInterface( pRenderBuffer8, &IID_IDirectSoundBuffer, (LPVOID *)&stream->pDirectSoundOutputBuffer );
/* release the ds 8 interfaces, we don't need them */
IUnknown_Release( pCaptureBuffer8 );
IUnknown_Release( pRenderBuffer8 );
if( !stream->pDirectSoundInputBuffer || !stream->pDirectSoundOutputBuffer ){
/* couldn't get pre ds 8 interfaces for some reason. clean up. */
if( stream->pDirectSoundInputBuffer )
{
IUnknown_Release( stream->pDirectSoundInputBuffer );
stream->pDirectSoundInputBuffer = NULL;
}
if( stream->pDirectSoundOutputBuffer )
{
IUnknown_Release( stream->pDirectSoundOutputBuffer );
stream->pDirectSoundOutputBuffer = NULL;
}
IUnknown_Release( stream->pDirectSoundFullDuplex8 );
stream->pDirectSoundFullDuplex8 = NULL;
}
}
else
{
PA_DEBUG(("DirectSoundFullDuplexCreate failed. hr=%d\n", hr));
}
return hr;
}
#endif /* PAWIN_USE_DIRECTSOUNDFULLDUPLEXCREATE */
static HRESULT InitInputBuffer( PaWinDsStream *stream,
PaWinDsDeviceInfo *device,
PaSampleFormat sampleFormat,
unsigned long nFrameRate,
WORD nChannels,
int bytesPerBuffer,
PaWinWaveFormatChannelMask channelMask )
{
DSCBUFFERDESC captureDesc;
PaWinWaveFormat waveFormat;
HRESULT result;
if( (result = paWinDsDSoundEntryPoints.DirectSoundCaptureCreate(
device->lpGUID, &stream->pDirectSoundCapture, NULL) ) != DS_OK ){
ERR_RPT(("PortAudio: DirectSoundCaptureCreate() failed!\n"));
return result;
}
// Setup the secondary buffer description
ZeroMemory(&captureDesc, sizeof(DSCBUFFERDESC));
captureDesc.dwSize = sizeof(DSCBUFFERDESC);
captureDesc.dwFlags = 0;
captureDesc.dwBufferBytes = bytesPerBuffer;
captureDesc.lpwfxFormat = (WAVEFORMATEX*)&waveFormat;
// Create the capture buffer
// first try WAVEFORMATEXTENSIBLE. if this fails, fall back to WAVEFORMATEX
PaWin_InitializeWaveFormatExtensible( &waveFormat, nChannels,
sampleFormat, PaWin_SampleFormatToLinearWaveFormatTag( sampleFormat ),
nFrameRate, channelMask );
if( IDirectSoundCapture_CreateCaptureBuffer( stream->pDirectSoundCapture,
&captureDesc, &stream->pDirectSoundInputBuffer, NULL) != DS_OK )
{
PaWin_InitializeWaveFormatEx( &waveFormat, nChannels, sampleFormat,
PaWin_SampleFormatToLinearWaveFormatTag( sampleFormat ), nFrameRate );
if ((result = IDirectSoundCapture_CreateCaptureBuffer( stream->pDirectSoundCapture,
&captureDesc, &stream->pDirectSoundInputBuffer, NULL)) != DS_OK) return result;
}
stream->readOffset = 0; // reset last read position to start of buffer
return DS_OK;
}
static HRESULT InitOutputBuffer( PaWinDsStream *stream, PaWinDsDeviceInfo *device,
PaSampleFormat sampleFormat, unsigned long nFrameRate,
WORD nChannels, int bytesPerBuffer,
PaWinWaveFormatChannelMask channelMask )
{
HRESULT result;
HWND hWnd;
HRESULT hr;
PaWinWaveFormat waveFormat;
DSBUFFERDESC primaryDesc;
DSBUFFERDESC secondaryDesc;
if( (hr = paWinDsDSoundEntryPoints.DirectSoundCreate(
device->lpGUID, &stream->pDirectSound, NULL )) != DS_OK ){
ERR_RPT(("PortAudio: DirectSoundCreate() failed!\n"));
return hr;
}
// We were using getForegroundWindow() but sometimes the ForegroundWindow may not be the
// applications's window. Also if that window is closed before the Buffer is closed
// then DirectSound can crash. (Thanks for Scott Patterson for reporting this.)
// So we will use GetDesktopWindow() which was suggested by Miller Puckette.
// hWnd = GetForegroundWindow();
//
// FIXME: The example code I have on the net creates a hidden window that
// is managed by our code - I think we should do that - one hidden
// window for the whole of Pa_DS
//
hWnd = GetDesktopWindow();
// Set cooperative level to DSSCL_EXCLUSIVE so that we can get 16 bit output, 44.1 KHz.
// exclusive also prevents unexpected sounds from other apps during a performance.
if ((hr = IDirectSound_SetCooperativeLevel( stream->pDirectSound,
hWnd, DSSCL_EXCLUSIVE)) != DS_OK)
{
return hr;
}
// -----------------------------------------------------------------------
// Create primary buffer and set format just so we can specify our custom format.
// Otherwise we would be stuck with the default which might be 8 bit or 22050 Hz.
// Setup the primary buffer description
ZeroMemory(&primaryDesc, sizeof(DSBUFFERDESC));
primaryDesc.dwSize = sizeof(DSBUFFERDESC);
primaryDesc.dwFlags = DSBCAPS_PRIMARYBUFFER; // all panning, mixing, etc done by synth
primaryDesc.dwBufferBytes = 0;
primaryDesc.lpwfxFormat = NULL;
// Create the buffer
if ((result = IDirectSound_CreateSoundBuffer( stream->pDirectSound,
&primaryDesc, &stream->pDirectSoundPrimaryBuffer, NULL)) != DS_OK)
goto error;
// Set the primary buffer's format
// first try WAVEFORMATEXTENSIBLE. if this fails, fall back to WAVEFORMATEX
PaWin_InitializeWaveFormatExtensible( &waveFormat, nChannels,
sampleFormat, PaWin_SampleFormatToLinearWaveFormatTag( sampleFormat ),
nFrameRate, channelMask );
if( IDirectSoundBuffer_SetFormat( stream->pDirectSoundPrimaryBuffer, (WAVEFORMATEX*)&waveFormat) != DS_OK )
{
PaWin_InitializeWaveFormatEx( &waveFormat, nChannels, sampleFormat,
PaWin_SampleFormatToLinearWaveFormatTag( sampleFormat ), nFrameRate );
if((result = IDirectSoundBuffer_SetFormat( stream->pDirectSoundPrimaryBuffer, (WAVEFORMATEX*)&waveFormat)) != DS_OK)
goto error;
}
// ----------------------------------------------------------------------
// Setup the secondary buffer description
ZeroMemory(&secondaryDesc, sizeof(DSBUFFERDESC));
secondaryDesc.dwSize = sizeof(DSBUFFERDESC);
secondaryDesc.dwFlags = DSBCAPS_GLOBALFOCUS | DSBCAPS_GETCURRENTPOSITION2;
secondaryDesc.dwBufferBytes = bytesPerBuffer;
secondaryDesc.lpwfxFormat = (WAVEFORMATEX*)&waveFormat; /* waveFormat contains whatever format was negotiated for the primary buffer above */
// Create the secondary buffer
if ((result = IDirectSound_CreateSoundBuffer( stream->pDirectSound,
&secondaryDesc, &stream->pDirectSoundOutputBuffer, NULL)) != DS_OK)
goto error;
return DS_OK;
error:
if( stream->pDirectSoundPrimaryBuffer )
{
IDirectSoundBuffer_Release( stream->pDirectSoundPrimaryBuffer );
stream->pDirectSoundPrimaryBuffer = NULL;
}
return result;
}
static void CalculateBufferSettings( unsigned long *hostBufferSizeFrames,
unsigned long *pollingPeriodFrames,
int isFullDuplex,
unsigned long suggestedInputLatencyFrames,
unsigned long suggestedOutputLatencyFrames,
double sampleRate, unsigned long userFramesPerBuffer )
{
unsigned long minimumPollingPeriodFrames = (unsigned long)(sampleRate * PA_DS_MINIMUM_POLLING_PERIOD_SECONDS);
unsigned long maximumPollingPeriodFrames = (unsigned long)(sampleRate * PA_DS_MAXIMUM_POLLING_PERIOD_SECONDS);
unsigned long pollingJitterFrames = (unsigned long)(sampleRate * PA_DS_POLLING_JITTER_SECONDS);
if( userFramesPerBuffer == paFramesPerBufferUnspecified )
{
unsigned long targetBufferingLatencyFrames = max( suggestedInputLatencyFrames, suggestedOutputLatencyFrames );
*pollingPeriodFrames = targetBufferingLatencyFrames / 4;
if( *pollingPeriodFrames < minimumPollingPeriodFrames )
{
*pollingPeriodFrames = minimumPollingPeriodFrames;
}
else if( *pollingPeriodFrames > maximumPollingPeriodFrames )
{
*pollingPeriodFrames = maximumPollingPeriodFrames;
}
*hostBufferSizeFrames = *pollingPeriodFrames
+ max( *pollingPeriodFrames + pollingJitterFrames, targetBufferingLatencyFrames);
}
else
{
unsigned long targetBufferingLatencyFrames = suggestedInputLatencyFrames;
if( isFullDuplex )
{
/* In full duplex streams we know that the buffer adapter adds userFramesPerBuffer
extra fixed latency. so we subtract it here as a fixed latency before computing
the buffer size. being careful not to produce an unrepresentable negative result.
Note: this only works as expected if output latency is greater than input latency.
Otherwise we use input latency anyway since we do max(in,out).
*/
if( userFramesPerBuffer < suggestedOutputLatencyFrames )
{
unsigned long adjustedSuggestedOutputLatencyFrames =
suggestedOutputLatencyFrames - userFramesPerBuffer;
/* maximum of input and adjusted output suggested latency */
if( adjustedSuggestedOutputLatencyFrames > targetBufferingLatencyFrames )
targetBufferingLatencyFrames = adjustedSuggestedOutputLatencyFrames;
}
}
else
{
/* maximum of input and output suggested latency */
if( suggestedOutputLatencyFrames > suggestedInputLatencyFrames )
targetBufferingLatencyFrames = suggestedOutputLatencyFrames;
}
*hostBufferSizeFrames = userFramesPerBuffer
+ max( userFramesPerBuffer + pollingJitterFrames, targetBufferingLatencyFrames);
*pollingPeriodFrames = max( max(1, userFramesPerBuffer / 4), targetBufferingLatencyFrames / 16 );
if( *pollingPeriodFrames > maximumPollingPeriodFrames )
{
*pollingPeriodFrames = maximumPollingPeriodFrames;
}
}
}
static void CalculatePollingPeriodFrames( unsigned long hostBufferSizeFrames,
unsigned long *pollingPeriodFrames,
double sampleRate, unsigned long userFramesPerBuffer )
{
unsigned long minimumPollingPeriodFrames = (unsigned long)(sampleRate * PA_DS_MINIMUM_POLLING_PERIOD_SECONDS);
unsigned long maximumPollingPeriodFrames = (unsigned long)(sampleRate * PA_DS_MAXIMUM_POLLING_PERIOD_SECONDS);
unsigned long pollingJitterFrames = (unsigned long)(sampleRate * PA_DS_POLLING_JITTER_SECONDS);
*pollingPeriodFrames = max( max(1, userFramesPerBuffer / 4), hostBufferSizeFrames / 16 );
if( *pollingPeriodFrames > maximumPollingPeriodFrames )
{
*pollingPeriodFrames = maximumPollingPeriodFrames;
}
}
static void SetStreamInfoLatencies( PaWinDsStream *stream,
unsigned long userFramesPerBuffer,
unsigned long pollingPeriodFrames,
double sampleRate )
{
/* compute the stream info actual latencies based on framesPerBuffer, polling period, hostBufferSizeFrames,
and the configuration of the buffer processor */
unsigned long effectiveFramesPerBuffer = (userFramesPerBuffer == paFramesPerBufferUnspecified)
? pollingPeriodFrames
: userFramesPerBuffer;
if( stream->bufferProcessor.inputChannelCount > 0 )
{
/* stream info input latency is the minimum buffering latency
(unlike suggested and default which are *maximums*) */
stream->streamRepresentation.streamInfo.inputLatency =
(double)(PaUtil_GetBufferProcessorInputLatencyFrames(&stream->bufferProcessor)
+ effectiveFramesPerBuffer) / sampleRate;
}
else
{
stream->streamRepresentation.streamInfo.inputLatency = 0;
}
if( stream->bufferProcessor.outputChannelCount > 0 )
{
stream->streamRepresentation.streamInfo.outputLatency =
(double)(PaUtil_GetBufferProcessorOutputLatencyFrames(&stream->bufferProcessor)
+ (stream->hostBufferSizeFrames - effectiveFramesPerBuffer)) / sampleRate;
}
else
{
stream->streamRepresentation.streamInfo.outputLatency = 0;
}
}
/***********************************************************************************/
/* see pa_hostapi.h for a list of validity guarantees made about OpenStream parameters */
static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi,
PaStream** s,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate,
unsigned long framesPerBuffer,
PaStreamFlags streamFlags,
PaStreamCallback *streamCallback,
void *userData )
{
PaError result = paNoError;
PaWinDsHostApiRepresentation *winDsHostApi = (PaWinDsHostApiRepresentation*)hostApi;
PaWinDsStream *stream = 0;
int bufferProcessorIsInitialized = 0;
int streamRepresentationIsInitialized = 0;
PaWinDsDeviceInfo *inputWinDsDeviceInfo, *outputWinDsDeviceInfo;
PaDeviceInfo *inputDeviceInfo, *outputDeviceInfo;
int inputChannelCount, outputChannelCount;
PaSampleFormat inputSampleFormat, outputSampleFormat;
PaSampleFormat hostInputSampleFormat, hostOutputSampleFormat;
int userRequestedHostInputBufferSizeFrames = 0;
int userRequestedHostOutputBufferSizeFrames = 0;
unsigned long suggestedInputLatencyFrames, suggestedOutputLatencyFrames;
PaWinDirectSoundStreamInfo *inputStreamInfo, *outputStreamInfo;
PaWinWaveFormatChannelMask inputChannelMask, outputChannelMask;
unsigned long pollingPeriodFrames = 0;
if( inputParameters )
{
inputWinDsDeviceInfo = (PaWinDsDeviceInfo*) hostApi->deviceInfos[ inputParameters->device ];
inputDeviceInfo = &inputWinDsDeviceInfo->inheritedDeviceInfo;
inputChannelCount = inputParameters->channelCount;
inputSampleFormat = inputParameters->sampleFormat;
suggestedInputLatencyFrames = (unsigned long)(inputParameters->suggestedLatency * sampleRate);
/* IDEA: the following 3 checks could be performed by default by pa_front
unless some flag indicated otherwise */
/* unless alternate device specification is supported, reject the use of
paUseHostApiSpecificDeviceSpecification */
if( inputParameters->device == paUseHostApiSpecificDeviceSpecification )
return paInvalidDevice;
/* check that input device can support inputChannelCount */
if( inputWinDsDeviceInfo->deviceInputChannelCountIsKnown
&& inputChannelCount > inputDeviceInfo->maxInputChannels )
return paInvalidChannelCount;
/* validate hostApiSpecificStreamInfo */
inputStreamInfo = (PaWinDirectSoundStreamInfo*)inputParameters->hostApiSpecificStreamInfo;
result = ValidateWinDirectSoundSpecificStreamInfo( inputParameters, inputStreamInfo );
if( result != paNoError ) return result;
if( inputStreamInfo && inputStreamInfo->flags & paWinDirectSoundUseLowLevelLatencyParameters )
userRequestedHostInputBufferSizeFrames = inputStreamInfo->framesPerBuffer;
if( inputStreamInfo && inputStreamInfo->flags & paWinDirectSoundUseChannelMask )
inputChannelMask = inputStreamInfo->channelMask;
else
inputChannelMask = PaWin_DefaultChannelMask( inputChannelCount );
}
else
{
inputChannelCount = 0;
inputSampleFormat = 0;
suggestedInputLatencyFrames = 0;
}
if( outputParameters )
{
outputWinDsDeviceInfo = (PaWinDsDeviceInfo*) hostApi->deviceInfos[ outputParameters->device ];
outputDeviceInfo = &outputWinDsDeviceInfo->inheritedDeviceInfo;
outputChannelCount = outputParameters->channelCount;
outputSampleFormat = outputParameters->sampleFormat;
suggestedOutputLatencyFrames = (unsigned long)(outputParameters->suggestedLatency * sampleRate);
/* unless alternate device specification is supported, reject the use of
paUseHostApiSpecificDeviceSpecification */
if( outputParameters->device == paUseHostApiSpecificDeviceSpecification )
return paInvalidDevice;
/* check that output device can support outputChannelCount */
if( outputWinDsDeviceInfo->deviceOutputChannelCountIsKnown
&& outputChannelCount > outputDeviceInfo->maxOutputChannels )
return paInvalidChannelCount;
/* validate hostApiSpecificStreamInfo */
outputStreamInfo = (PaWinDirectSoundStreamInfo*)outputParameters->hostApiSpecificStreamInfo;
result = ValidateWinDirectSoundSpecificStreamInfo( outputParameters, outputStreamInfo );
if( result != paNoError ) return result;
if( outputStreamInfo && outputStreamInfo->flags & paWinDirectSoundUseLowLevelLatencyParameters )
userRequestedHostOutputBufferSizeFrames = outputStreamInfo->framesPerBuffer;
if( outputStreamInfo && outputStreamInfo->flags & paWinDirectSoundUseChannelMask )
outputChannelMask = outputStreamInfo->channelMask;
else
outputChannelMask = PaWin_DefaultChannelMask( outputChannelCount );
}
else
{
outputChannelCount = 0;
outputSampleFormat = 0;
suggestedOutputLatencyFrames = 0;
}
/*
If low level host buffer size is specified for both input and output
the current code requires the sizes to match.
*/
if( (userRequestedHostInputBufferSizeFrames > 0 && userRequestedHostOutputBufferSizeFrames > 0)
&& userRequestedHostInputBufferSizeFrames != userRequestedHostOutputBufferSizeFrames )
return paIncompatibleHostApiSpecificStreamInfo;
/*
IMPLEMENT ME:
( the following two checks are taken care of by PaUtil_InitializeBufferProcessor() )
- check that input device can support inputSampleFormat, or that
we have the capability to convert from outputSampleFormat to
a native format
- check that output device can support outputSampleFormat, or that
we have the capability to convert from outputSampleFormat to
a native format
- if a full duplex stream is requested, check that the combination
of input and output parameters is supported
- check that the device supports sampleRate
- alter sampleRate to a close allowable rate if possible / necessary
- validate suggestedInputLatency and suggestedOutputLatency parameters,
use default values where necessary
*/
/* validate platform specific flags */
if( (streamFlags & paPlatformSpecificFlags) != 0 )
return paInvalidFlag; /* unexpected platform specific flag */
stream = (PaWinDsStream*)PaUtil_AllocateMemory( sizeof(PaWinDsStream) );
if( !stream )
{
result = paInsufficientMemory;
goto error;
}
memset( stream, 0, sizeof(PaWinDsStream) ); /* initialize all stream variables to 0 */
if( streamCallback )
{
PaUtil_InitializeStreamRepresentation( &stream->streamRepresentation,
&winDsHostApi->callbackStreamInterface, streamCallback, userData );
}
else
{
PaUtil_InitializeStreamRepresentation( &stream->streamRepresentation,
&winDsHostApi->blockingStreamInterface, streamCallback, userData );
}
streamRepresentationIsInitialized = 1;
stream->streamFlags = streamFlags;
PaUtil_InitializeCpuLoadMeasurer( &stream->cpuLoadMeasurer, sampleRate );
if( inputParameters )
{
/* IMPLEMENT ME - establish which host formats are available */
PaSampleFormat nativeInputFormats = paInt16;
/* PaSampleFormat nativeFormats = paUInt8 | paInt16 | paInt24 | paInt32 | paFloat32; */
hostInputSampleFormat =
PaUtil_SelectClosestAvailableFormat( nativeInputFormats, inputParameters->sampleFormat );
}
else
{
hostInputSampleFormat = 0;
}
if( outputParameters )
{
/* IMPLEMENT ME - establish which host formats are available */
PaSampleFormat nativeOutputFormats = paInt16;
/* PaSampleFormat nativeOutputFormats = paUInt8 | paInt16 | paInt24 | paInt32 | paFloat32; */
hostOutputSampleFormat =
PaUtil_SelectClosestAvailableFormat( nativeOutputFormats, outputParameters->sampleFormat );
}
else
{
hostOutputSampleFormat = 0;
}
result = PaUtil_InitializeBufferProcessor( &stream->bufferProcessor,
inputChannelCount, inputSampleFormat, hostInputSampleFormat,
outputChannelCount, outputSampleFormat, hostOutputSampleFormat,
sampleRate, streamFlags, framesPerBuffer,
0, /* ignored in paUtilVariableHostBufferSizePartialUsageAllowed mode. */
/* This next mode is required because DS can split the host buffer when it wraps around. */
paUtilVariableHostBufferSizePartialUsageAllowed,
streamCallback, userData );
if( result != paNoError )
goto error;
bufferProcessorIsInitialized = 1;
/* DirectSound specific initialization */
{
HRESULT hr;
unsigned long integerSampleRate = (unsigned long) (sampleRate + 0.5);
stream->processingCompleted = CreateEvent( NULL, /* bManualReset = */ TRUE, /* bInitialState = */ FALSE, NULL );
if( stream->processingCompleted == NULL )
{
result = paInsufficientMemory;
goto error;
}
#ifdef PA_WIN_DS_USE_WMME_TIMER
stream->timerID = 0;
#endif
#ifdef PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT
stream->waitableTimer = (HANDLE)CreateWaitableTimer( 0, FALSE, NULL );
if( stream->waitableTimer == NULL )
{
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( GetLastError() );
goto error;
}
#endif
#ifndef PA_WIN_DS_USE_WMME_TIMER
stream->processingThreadCompleted = CreateEvent( NULL, /* bManualReset = */ TRUE, /* bInitialState = */ FALSE, NULL );
if( stream->processingThreadCompleted == NULL )
{
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( GetLastError() );
goto error;
}
#endif
/* set up i/o parameters */
if( userRequestedHostInputBufferSizeFrames > 0 || userRequestedHostOutputBufferSizeFrames > 0 )
{
/* use low level parameters */
/* since we use the same host buffer size for input and output
we choose the highest user specified value.
*/
stream->hostBufferSizeFrames = max( userRequestedHostInputBufferSizeFrames, userRequestedHostOutputBufferSizeFrames );
CalculatePollingPeriodFrames(
stream->hostBufferSizeFrames, &pollingPeriodFrames,
sampleRate, framesPerBuffer );
}
else
{
CalculateBufferSettings( (unsigned long*)&stream->hostBufferSizeFrames, &pollingPeriodFrames,
/* isFullDuplex = */ (inputParameters && outputParameters),
suggestedInputLatencyFrames,
suggestedOutputLatencyFrames,
sampleRate, framesPerBuffer );
}
stream->pollingPeriodSeconds = pollingPeriodFrames / sampleRate;
DBUG(("DirectSound host buffer size frames: %d, polling period seconds: %f, @ sr: %f\n",
stream->hostBufferSizeFrames, stream->pollingPeriodSeconds, sampleRate ));
/* ------------------ OUTPUT */
if( outputParameters )
{
LARGE_INTEGER counterFrequency;
/*
PaDeviceInfo *deviceInfo = hostApi->deviceInfos[ outputParameters->device ];
DBUG(("PaHost_OpenStream: deviceID = 0x%x\n", outputParameters->device));
*/
int sampleSizeBytes = Pa_GetSampleSize(hostOutputSampleFormat);
stream->outputFrameSizeBytes = outputParameters->channelCount * sampleSizeBytes;
stream->outputBufferSizeBytes = stream->hostBufferSizeFrames * stream->outputFrameSizeBytes;
if( stream->outputBufferSizeBytes < DSBSIZE_MIN )
{
result = paBufferTooSmall;
goto error;
}
else if( stream->outputBufferSizeBytes > DSBSIZE_MAX )
{
result = paBufferTooBig;
goto error;
}
/* Calculate value used in latency calculation to avoid real-time divides. */
stream->secondsPerHostByte = 1.0 /
(stream->bufferProcessor.bytesPerHostOutputSample *
outputChannelCount * sampleRate);
stream->outputIsRunning = FALSE;
stream->outputUnderflowCount = 0;
/* perfCounterTicksPerBuffer is used by QueryOutputSpace for overflow detection */
if( QueryPerformanceFrequency( &counterFrequency ) )
{
stream->perfCounterTicksPerBuffer.QuadPart = (counterFrequency.QuadPart * stream->hostBufferSizeFrames) / integerSampleRate;
}
else
{
stream->perfCounterTicksPerBuffer.QuadPart = 0;
}
}
/* ------------------ INPUT */
if( inputParameters )
{
/*
PaDeviceInfo *deviceInfo = hostApi->deviceInfos[ inputParameters->device ];
DBUG(("PaHost_OpenStream: deviceID = 0x%x\n", inputParameters->device));
*/
int sampleSizeBytes = Pa_GetSampleSize(hostInputSampleFormat);
stream->inputFrameSizeBytes = inputParameters->channelCount * sampleSizeBytes;
stream->inputBufferSizeBytes = stream->hostBufferSizeFrames * stream->inputFrameSizeBytes;
if( stream->inputBufferSizeBytes < DSBSIZE_MIN )
{
result = paBufferTooSmall;
goto error;
}
else if( stream->inputBufferSizeBytes > DSBSIZE_MAX )
{
result = paBufferTooBig;
goto error;
}
}
/* open/create the DirectSound buffers */
/* interface ptrs should be zeroed when stream is zeroed. */
assert( stream->pDirectSoundCapture == NULL );
assert( stream->pDirectSoundInputBuffer == NULL );
assert( stream->pDirectSound == NULL );
assert( stream->pDirectSoundPrimaryBuffer == NULL );
assert( stream->pDirectSoundOutputBuffer == NULL );
if( inputParameters && outputParameters )
{
#ifdef PAWIN_USE_DIRECTSOUNDFULLDUPLEXCREATE
/* try to use the full-duplex DX8 API to create the buffers.
if that fails we fall back to the half-duplex API below */
hr = InitFullDuplexInputOutputBuffers( stream,
(PaWinDsDeviceInfo*)hostApi->deviceInfos[inputParameters->device],
hostInputSampleFormat,
(WORD)inputParameters->channelCount, stream->inputBufferSizeBytes,
inputChannelMask,
(PaWinDsDeviceInfo*)hostApi->deviceInfos[outputParameters->device],
hostOutputSampleFormat,
(WORD)outputParameters->channelCount, stream->outputBufferSizeBytes,
outputChannelMask,
integerSampleRate
);
DBUG(("InitFullDuplexInputOutputBuffers() returns %x\n", hr));
/* ignore any error returned by InitFullDuplexInputOutputBuffers.
we retry opening the buffers below */
#endif /* PAWIN_USE_DIRECTSOUNDFULLDUPLEXCREATE */
}
/* create half duplex buffers. also used for full-duplex streams which didn't
succeed when using the full duplex API. that could happen because
DX8 or greater isn't installed, the i/o devices aren't the same
physical device. etc.
*/
if( outputParameters && !stream->pDirectSoundOutputBuffer )
{
hr = InitOutputBuffer( stream,
(PaWinDsDeviceInfo*)hostApi->deviceInfos[outputParameters->device],
hostOutputSampleFormat,
integerSampleRate,
(WORD)outputParameters->channelCount, stream->outputBufferSizeBytes,
outputChannelMask );
DBUG(("InitOutputBuffer() returns %x\n", hr));
if( hr != DS_OK )
{
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( hr );
goto error;
}
}
if( inputParameters && !stream->pDirectSoundInputBuffer )
{
hr = InitInputBuffer( stream,
(PaWinDsDeviceInfo*)hostApi->deviceInfos[inputParameters->device],
hostInputSampleFormat,
integerSampleRate,
(WORD)inputParameters->channelCount, stream->inputBufferSizeBytes,
inputChannelMask );
DBUG(("InitInputBuffer() returns %x\n", hr));
if( hr != DS_OK )
{
ERR_RPT(("PortAudio: DSW_InitInputBuffer() returns %x\n", hr));
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( hr );
goto error;
}
}
}
SetStreamInfoLatencies( stream, framesPerBuffer, pollingPeriodFrames, sampleRate );
stream->streamRepresentation.streamInfo.sampleRate = sampleRate;
*s = (PaStream*)stream;
return result;
error:
if( stream )
{
if( stream->processingCompleted != NULL )
CloseHandle( stream->processingCompleted );
#ifdef PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT
if( stream->waitableTimer != NULL )
CloseHandle( stream->waitableTimer );
#endif
#ifndef PA_WIN_DS_USE_WMME_TIMER
if( stream->processingThreadCompleted != NULL )
CloseHandle( stream->processingThreadCompleted );
#endif
if( stream->pDirectSoundOutputBuffer )
{
IDirectSoundBuffer_Stop( stream->pDirectSoundOutputBuffer );
IDirectSoundBuffer_Release( stream->pDirectSoundOutputBuffer );
stream->pDirectSoundOutputBuffer = NULL;
}
if( stream->pDirectSoundPrimaryBuffer )
{
IDirectSoundBuffer_Release( stream->pDirectSoundPrimaryBuffer );
stream->pDirectSoundPrimaryBuffer = NULL;
}
if( stream->pDirectSoundInputBuffer )
{
IDirectSoundCaptureBuffer_Stop( stream->pDirectSoundInputBuffer );
IDirectSoundCaptureBuffer_Release( stream->pDirectSoundInputBuffer );
stream->pDirectSoundInputBuffer = NULL;
}
if( stream->pDirectSoundCapture )
{
IDirectSoundCapture_Release( stream->pDirectSoundCapture );
stream->pDirectSoundCapture = NULL;
}
if( stream->pDirectSound )
{
IDirectSound_Release( stream->pDirectSound );
stream->pDirectSound = NULL;
}
#ifdef PAWIN_USE_DIRECTSOUNDFULLDUPLEXCREATE
if( stream->pDirectSoundFullDuplex8 )
{
IDirectSoundFullDuplex_Release( stream->pDirectSoundFullDuplex8 );
stream->pDirectSoundFullDuplex8 = NULL;
}
#endif
if( bufferProcessorIsInitialized )
PaUtil_TerminateBufferProcessor( &stream->bufferProcessor );
if( streamRepresentationIsInitialized )
PaUtil_TerminateStreamRepresentation( &stream->streamRepresentation );
PaUtil_FreeMemory( stream );
}
return result;
}
/************************************************************************************
* Determine how much space can be safely written to in DS buffer.
* Detect underflows and overflows.
* Does not allow writing into safety gap maintained by DirectSound.
*/
static HRESULT QueryOutputSpace( PaWinDsStream *stream, long *bytesEmpty )
{
HRESULT hr;
DWORD playCursor;
DWORD writeCursor;
long numBytesEmpty;
long playWriteGap;
// Query to see how much room is in buffer.
hr = IDirectSoundBuffer_GetCurrentPosition( stream->pDirectSoundOutputBuffer,
&playCursor, &writeCursor );
if( hr != DS_OK )
{
return hr;
}
// Determine size of gap between playIndex and WriteIndex that we cannot write into.
playWriteGap = writeCursor - playCursor;
if( playWriteGap < 0 ) playWriteGap += stream->outputBufferSizeBytes; // unwrap
/* DirectSound doesn't have a large enough playCursor so we cannot detect wrap-around. */
/* Attempt to detect playCursor wrap-around and correct it. */
if( stream->outputIsRunning && (stream->perfCounterTicksPerBuffer.QuadPart != 0) )
{
/* How much time has elapsed since last check. */
LARGE_INTEGER currentTime;
LARGE_INTEGER elapsedTime;
long bytesPlayed;
long bytesExpected;
long buffersWrapped;
QueryPerformanceCounter( &currentTime );
elapsedTime.QuadPart = currentTime.QuadPart - stream->previousPlayTime.QuadPart;
stream->previousPlayTime = currentTime;
/* How many bytes does DirectSound say have been played. */
bytesPlayed = playCursor - stream->previousPlayCursor;
if( bytesPlayed < 0 ) bytesPlayed += stream->outputBufferSizeBytes; // unwrap
stream->previousPlayCursor = playCursor;
/* Calculate how many bytes we would have expected to been played by now. */
bytesExpected = (long) ((elapsedTime.QuadPart * stream->outputBufferSizeBytes) / stream->perfCounterTicksPerBuffer.QuadPart);
buffersWrapped = (bytesExpected - bytesPlayed) / stream->outputBufferSizeBytes;
if( buffersWrapped > 0 )
{
playCursor += (buffersWrapped * stream->outputBufferSizeBytes);
bytesPlayed += (buffersWrapped * stream->outputBufferSizeBytes);
}
}
numBytesEmpty = playCursor - stream->outputBufferWriteOffsetBytes;
if( numBytesEmpty < 0 ) numBytesEmpty += stream->outputBufferSizeBytes; // unwrap offset
/* Have we underflowed? */
if( numBytesEmpty > (stream->outputBufferSizeBytes - playWriteGap) )
{
if( stream->outputIsRunning )
{
stream->outputUnderflowCount += 1;
}
/*
From MSDN:
The write cursor indicates the position at which it is safe
to write new data to the buffer. The write cursor always leads the
play cursor, typically by about 15 milliseconds' worth of audio
data.
It is always safe to change data that is behind the position
indicated by the lpdwCurrentPlayCursor parameter.
*/
stream->outputBufferWriteOffsetBytes = writeCursor;
numBytesEmpty = stream->outputBufferSizeBytes - playWriteGap;
}
*bytesEmpty = numBytesEmpty;
return hr;
}
/***********************************************************************************/
static int TimeSlice( PaWinDsStream *stream )
{
long numFrames = 0;
long bytesEmpty = 0;
long bytesFilled = 0;
long bytesToXfer = 0;
long framesToXfer = 0; /* the number of frames we'll process this tick */
long numInFramesReady = 0;
long numOutFramesReady = 0;
long bytesProcessed;
HRESULT hresult;
double outputLatency = 0;
double inputLatency = 0;
PaStreamCallbackTimeInfo timeInfo = {0,0,0};
/* Input */
LPBYTE lpInBuf1 = NULL;
LPBYTE lpInBuf2 = NULL;
DWORD dwInSize1 = 0;
DWORD dwInSize2 = 0;
/* Output */
LPBYTE lpOutBuf1 = NULL;
LPBYTE lpOutBuf2 = NULL;
DWORD dwOutSize1 = 0;
DWORD dwOutSize2 = 0;
/* How much input data is available? */
if( stream->bufferProcessor.inputChannelCount > 0 )
{
HRESULT hr;
DWORD capturePos;
DWORD readPos;
long filled = 0;
// Query to see how much data is in buffer.
// We don't need the capture position but sometimes DirectSound doesn't handle NULLS correctly
// so let's pass a pointer just to be safe.
hr = IDirectSoundCaptureBuffer_GetCurrentPosition( stream->pDirectSoundInputBuffer, &capturePos, &readPos );
if( hr == DS_OK )
{
filled = readPos - stream->readOffset;
if( filled < 0 ) filled += stream->inputBufferSizeBytes; // unwrap offset
bytesFilled = filled;
inputLatency = ((double)bytesFilled) * stream->secondsPerHostByte;
}
// FIXME: what happens if IDirectSoundCaptureBuffer_GetCurrentPosition fails?
framesToXfer = numInFramesReady = bytesFilled / stream->inputFrameSizeBytes;
/** @todo Check for overflow */
}
/* How much output room is available? */
if( stream->bufferProcessor.outputChannelCount > 0 )
{
UINT previousUnderflowCount = stream->outputUnderflowCount;
QueryOutputSpace( stream, &bytesEmpty );
framesToXfer = numOutFramesReady = bytesEmpty / stream->outputFrameSizeBytes;
/* Check for underflow */
/* FIXME QueryOutputSpace should not adjust underflow count as a side effect.
A query function should be a const operator on the stream and return a flag on underflow. */
if( stream->outputUnderflowCount != previousUnderflowCount )
stream->callbackFlags |= paOutputUnderflow;
/* We are about to compute audio into the first byte of empty space in the output buffer.
This audio will reach the DAC after all of the current (non-empty) audio
in the buffer has played. Therefore the output time is the current time
plus the time it takes to play the non-empty bytes in the buffer,
computed here:
*/
outputLatency = ((double)(stream->outputBufferSizeBytes - bytesEmpty)) * stream->secondsPerHostByte;
}
/* if it's a full duplex stream, set framesToXfer to the minimum of input and output frames ready */
if( stream->bufferProcessor.inputChannelCount > 0 && stream->bufferProcessor.outputChannelCount > 0 )
{
framesToXfer = (numOutFramesReady < numInFramesReady) ? numOutFramesReady : numInFramesReady;
}
if( framesToXfer > 0 )
{
PaUtil_BeginCpuLoadMeasurement( &stream->cpuLoadMeasurer );
/* The outputBufferDacTime parameter should indicates the time at which
the first sample of the output buffer is heard at the DACs. */
timeInfo.currentTime = PaUtil_GetTime();
PaUtil_BeginBufferProcessing( &stream->bufferProcessor, &timeInfo, stream->callbackFlags );
stream->callbackFlags = 0;
/* Input */
if( stream->bufferProcessor.inputChannelCount > 0 )
{
timeInfo.inputBufferAdcTime = timeInfo.currentTime - inputLatency;
bytesToXfer = framesToXfer * stream->inputFrameSizeBytes;
hresult = IDirectSoundCaptureBuffer_Lock ( stream->pDirectSoundInputBuffer,
stream->readOffset, bytesToXfer,
(void **) &lpInBuf1, &dwInSize1,
(void **) &lpInBuf2, &dwInSize2, 0);
if (hresult != DS_OK)
{
ERR_RPT(("DirectSound IDirectSoundCaptureBuffer_Lock failed, hresult = 0x%x\n",hresult));
/* PA_DS_SET_LAST_DIRECTSOUND_ERROR( hresult ); */
PaUtil_ResetBufferProcessor( &stream->bufferProcessor ); /* flush the buffer processor */
stream->callbackResult = paComplete;
goto error2;
}
numFrames = dwInSize1 / stream->inputFrameSizeBytes;
PaUtil_SetInputFrameCount( &stream->bufferProcessor, numFrames );
PaUtil_SetInterleavedInputChannels( &stream->bufferProcessor, 0, lpInBuf1, 0 );
/* Is input split into two regions. */
if( dwInSize2 > 0 )
{
numFrames = dwInSize2 / stream->inputFrameSizeBytes;
PaUtil_Set2ndInputFrameCount( &stream->bufferProcessor, numFrames );
PaUtil_Set2ndInterleavedInputChannels( &stream->bufferProcessor, 0, lpInBuf2, 0 );
}
}
/* Output */
if( stream->bufferProcessor.outputChannelCount > 0 )
{
/*
We don't currently add outputLatency here because it appears to produce worse
results than not adding it. Need to do more testing to verify this.
*/
/* timeInfo.outputBufferDacTime = timeInfo.currentTime + outputLatency; */
timeInfo.outputBufferDacTime = timeInfo.currentTime;
bytesToXfer = framesToXfer * stream->outputFrameSizeBytes;
hresult = IDirectSoundBuffer_Lock ( stream->pDirectSoundOutputBuffer,
stream->outputBufferWriteOffsetBytes, bytesToXfer,
(void **) &lpOutBuf1, &dwOutSize1,
(void **) &lpOutBuf2, &dwOutSize2, 0);
if (hresult != DS_OK)
{
ERR_RPT(("DirectSound IDirectSoundBuffer_Lock failed, hresult = 0x%x\n",hresult));
/* PA_DS_SET_LAST_DIRECTSOUND_ERROR( hresult ); */
PaUtil_ResetBufferProcessor( &stream->bufferProcessor ); /* flush the buffer processor */
stream->callbackResult = paComplete;
goto error1;
}
numFrames = dwOutSize1 / stream->outputFrameSizeBytes;
PaUtil_SetOutputFrameCount( &stream->bufferProcessor, numFrames );
PaUtil_SetInterleavedOutputChannels( &stream->bufferProcessor, 0, lpOutBuf1, 0 );
/* Is output split into two regions. */
if( dwOutSize2 > 0 )
{
numFrames = dwOutSize2 / stream->outputFrameSizeBytes;
PaUtil_Set2ndOutputFrameCount( &stream->bufferProcessor, numFrames );
PaUtil_Set2ndInterleavedOutputChannels( &stream->bufferProcessor, 0, lpOutBuf2, 0 );
}
}
numFrames = PaUtil_EndBufferProcessing( &stream->bufferProcessor, &stream->callbackResult );
stream->framesWritten += numFrames;
if( stream->bufferProcessor.outputChannelCount > 0 )
{
/* FIXME: an underflow could happen here */
/* Update our buffer offset and unlock sound buffer */
bytesProcessed = numFrames * stream->outputFrameSizeBytes;
stream->outputBufferWriteOffsetBytes = (stream->outputBufferWriteOffsetBytes + bytesProcessed) % stream->outputBufferSizeBytes;
IDirectSoundBuffer_Unlock( stream->pDirectSoundOutputBuffer, lpOutBuf1, dwOutSize1, lpOutBuf2, dwOutSize2);
}
error1:
if( stream->bufferProcessor.inputChannelCount > 0 )
{
/* FIXME: an overflow could happen here */
/* Update our buffer offset and unlock sound buffer */
bytesProcessed = numFrames * stream->inputFrameSizeBytes;
stream->readOffset = (stream->readOffset + bytesProcessed) % stream->inputBufferSizeBytes;
IDirectSoundCaptureBuffer_Unlock( stream->pDirectSoundInputBuffer, lpInBuf1, dwInSize1, lpInBuf2, dwInSize2);
}
error2:
PaUtil_EndCpuLoadMeasurement( &stream->cpuLoadMeasurer, numFrames );
}
if( stream->callbackResult == paComplete && !PaUtil_IsBufferProcessorOutputEmpty( &stream->bufferProcessor ) )
{
/* don't return completed until the buffer processor has been drained */
return paContinue;
}
else
{
return stream->callbackResult;
}
}
/*******************************************************************/
static HRESULT ZeroAvailableOutputSpace( PaWinDsStream *stream )
{
HRESULT hr;
LPBYTE lpbuf1 = NULL;
LPBYTE lpbuf2 = NULL;
DWORD dwsize1 = 0;
DWORD dwsize2 = 0;
long bytesEmpty;
hr = QueryOutputSpace( stream, &bytesEmpty );
if (hr != DS_OK) return hr;
if( bytesEmpty == 0 ) return DS_OK;
// Lock free space in the DS
hr = IDirectSoundBuffer_Lock( stream->pDirectSoundOutputBuffer, stream->outputBufferWriteOffsetBytes,
bytesEmpty, (void **) &lpbuf1, &dwsize1,
(void **) &lpbuf2, &dwsize2, 0);
if (hr == DS_OK)
{
// Copy the buffer into the DS
ZeroMemory(lpbuf1, dwsize1);
if(lpbuf2 != NULL)
{
ZeroMemory(lpbuf2, dwsize2);
}
// Update our buffer offset and unlock sound buffer
stream->outputBufferWriteOffsetBytes = (stream->outputBufferWriteOffsetBytes + dwsize1 + dwsize2) % stream->outputBufferSizeBytes;
IDirectSoundBuffer_Unlock( stream->pDirectSoundOutputBuffer, lpbuf1, dwsize1, lpbuf2, dwsize2);
stream->finalZeroBytesWritten += dwsize1 + dwsize2;
}
return hr;
}
static void CALLBACK TimerCallback(UINT uID, UINT uMsg, DWORD_PTR dwUser, DWORD dw1, DWORD dw2)
{
PaWinDsStream *stream;
int isFinished = 0;
/* suppress unused variable warnings */
(void) uID;
(void) uMsg;
(void) dw1;
(void) dw2;
stream = (PaWinDsStream *) dwUser;
if( stream == NULL ) return;
if( stream->isActive )
{
if( stream->abortProcessing )
{
isFinished = 1;
}
else if( stream->stopProcessing )
{
if( stream->bufferProcessor.outputChannelCount > 0 )
{
ZeroAvailableOutputSpace( stream );
if( stream->finalZeroBytesWritten >= stream->outputBufferSizeBytes )
{
/* once we've flushed the whole output buffer with zeros we know all data has been played */
isFinished = 1;
}
}
else
{
isFinished = 1;
}
}
else
{
int callbackResult = TimeSlice( stream );
if( callbackResult != paContinue )
{
/* FIXME implement handling of paComplete and paAbort if possible
At the moment this should behave as if paComplete was called and
flush the buffer.
*/
stream->stopProcessing = 1;
}
}
if( isFinished )
{
if( stream->streamRepresentation.streamFinishedCallback != 0 )
stream->streamRepresentation.streamFinishedCallback( stream->streamRepresentation.userData );
stream->isActive = 0; /* don't set this until the stream really is inactive */
SetEvent( stream->processingCompleted );
}
}
}
#ifndef PA_WIN_DS_USE_WMME_TIMER
#ifdef PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT
static void CALLBACK WaitableTimerAPCProc(
LPVOID lpArg, // Data value
DWORD dwTimerLowValue, // Timer low value
DWORD dwTimerHighValue ) // Timer high value
{
(void)dwTimerLowValue;
(void)dwTimerHighValue;
TimerCallback( 0, 0, (DWORD_PTR)lpArg, 0, 0 );
}
#endif /* PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT */
PA_THREAD_FUNC ProcessingThreadProc( void *pArg )
{
PaWinDsStream *stream = (PaWinDsStream *)pArg;
LARGE_INTEGER dueTime;
int timerPeriodMs;
timerPeriodMs = (int)(stream->pollingPeriodSeconds * MSECS_PER_SECOND);
if( timerPeriodMs < 1 )
timerPeriodMs = 1;
#ifdef PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT
assert( stream->waitableTimer != NULL );
/* invoke first timeout immediately */
dueTime.LowPart = timerPeriodMs * 1000 * 10;
dueTime.HighPart = 0;
/* tick using waitable timer */
if( SetWaitableTimer( stream->waitableTimer, &dueTime, timerPeriodMs, WaitableTimerAPCProc, pArg, FALSE ) != 0 )
{
DWORD wfsoResult = 0;
do
{
/* wait for processingCompleted to be signaled or our timer APC to be called */
wfsoResult = WaitForSingleObjectEx( stream->processingCompleted, timerPeriodMs * 10, /* alertable = */ TRUE );
}while( wfsoResult == WAIT_TIMEOUT || wfsoResult == WAIT_IO_COMPLETION );
}
CancelWaitableTimer( stream->waitableTimer );
#else
/* tick using WaitForSingleObject timeout */
while ( WaitForSingleObject( stream->processingCompleted, timerPeriodMs ) == WAIT_TIMEOUT )
{
TimerCallback( 0, 0, (DWORD_PTR)pArg, 0, 0 );
}
#endif /* PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT */
SetEvent( stream->processingThreadCompleted );
return 0;
}
#endif /* !PA_WIN_DS_USE_WMME_TIMER */
/***********************************************************************************
When CloseStream() is called, the multi-api layer ensures that
the stream has already been stopped or aborted.
*/
static PaError CloseStream( PaStream* s )
{
PaError result = paNoError;
PaWinDsStream *stream = (PaWinDsStream*)s;
CloseHandle( stream->processingCompleted );
#ifdef PA_WIN_DS_USE_WAITABLE_TIMER_OBJECT
if( stream->waitableTimer != NULL )
CloseHandle( stream->waitableTimer );
#endif
#ifndef PA_WIN_DS_USE_WMME_TIMER
CloseHandle( stream->processingThreadCompleted );
#endif
// Cleanup the sound buffers
if( stream->pDirectSoundOutputBuffer )
{
IDirectSoundBuffer_Stop( stream->pDirectSoundOutputBuffer );
IDirectSoundBuffer_Release( stream->pDirectSoundOutputBuffer );
stream->pDirectSoundOutputBuffer = NULL;
}
if( stream->pDirectSoundPrimaryBuffer )
{
IDirectSoundBuffer_Release( stream->pDirectSoundPrimaryBuffer );
stream->pDirectSoundPrimaryBuffer = NULL;
}
if( stream->pDirectSoundInputBuffer )
{
IDirectSoundCaptureBuffer_Stop( stream->pDirectSoundInputBuffer );
IDirectSoundCaptureBuffer_Release( stream->pDirectSoundInputBuffer );
stream->pDirectSoundInputBuffer = NULL;
}
if( stream->pDirectSoundCapture )
{
IDirectSoundCapture_Release( stream->pDirectSoundCapture );
stream->pDirectSoundCapture = NULL;
}
if( stream->pDirectSound )
{
IDirectSound_Release( stream->pDirectSound );
stream->pDirectSound = NULL;
}
#ifdef PAWIN_USE_DIRECTSOUNDFULLDUPLEXCREATE
if( stream->pDirectSoundFullDuplex8 )
{
IDirectSoundFullDuplex_Release( stream->pDirectSoundFullDuplex8 );
stream->pDirectSoundFullDuplex8 = NULL;
}
#endif
PaUtil_TerminateBufferProcessor( &stream->bufferProcessor );
PaUtil_TerminateStreamRepresentation( &stream->streamRepresentation );
PaUtil_FreeMemory( stream );
return result;
}
/***********************************************************************************/
static HRESULT ClearOutputBuffer( PaWinDsStream *stream )
{
PaError result = paNoError;
unsigned char* pDSBuffData;
DWORD dwDataLen;
HRESULT hr;
hr = IDirectSoundBuffer_SetCurrentPosition( stream->pDirectSoundOutputBuffer, 0 );
DBUG(("PaHost_ClearOutputBuffer: IDirectSoundBuffer_SetCurrentPosition returned = 0x%X.\n", hr));
if( hr != DS_OK )
return hr;
// Lock the DS buffer
if ((hr = IDirectSoundBuffer_Lock( stream->pDirectSoundOutputBuffer, 0, stream->outputBufferSizeBytes, (LPVOID*)&pDSBuffData,
&dwDataLen, NULL, 0, 0)) != DS_OK )
return hr;
// Zero the DS buffer
ZeroMemory(pDSBuffData, dwDataLen);
// Unlock the DS buffer
if ((hr = IDirectSoundBuffer_Unlock( stream->pDirectSoundOutputBuffer, pDSBuffData, dwDataLen, NULL, 0)) != DS_OK)
return hr;
// Let DSound set the starting write position because if we set it to zero, it looks like the
// buffer is full to begin with. This causes a long pause before sound starts when using large buffers.
if ((hr = IDirectSoundBuffer_GetCurrentPosition( stream->pDirectSoundOutputBuffer,
&stream->previousPlayCursor, &stream->outputBufferWriteOffsetBytes )) != DS_OK)
return hr;
/* printf("DSW_InitOutputBuffer: playCursor = %d, writeCursor = %d\n", playCursor, dsw->dsw_WriteOffset ); */
return DS_OK;
}
static PaError StartStream( PaStream *s )
{
PaError result = paNoError;
PaWinDsStream *stream = (PaWinDsStream*)s;
HRESULT hr;
stream->callbackResult = paContinue;
PaUtil_ResetBufferProcessor( &stream->bufferProcessor );
ResetEvent( stream->processingCompleted );
#ifndef PA_WIN_DS_USE_WMME_TIMER
ResetEvent( stream->processingThreadCompleted );
#endif
if( stream->bufferProcessor.inputChannelCount > 0 )
{
// Start the buffer capture
if( stream->pDirectSoundInputBuffer != NULL ) // FIXME: not sure this check is necessary
{
hr = IDirectSoundCaptureBuffer_Start( stream->pDirectSoundInputBuffer, DSCBSTART_LOOPING );
}
DBUG(("StartStream: DSW_StartInput returned = 0x%X.\n", hr));
if( hr != DS_OK )
{
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( hr );
goto error;
}
}
stream->framesWritten = 0;
stream->callbackFlags = 0;
stream->abortProcessing = 0;
stream->stopProcessing = 0;
if( stream->bufferProcessor.outputChannelCount > 0 )
{
QueryPerformanceCounter( &stream->previousPlayTime );
stream->finalZeroBytesWritten = 0;
hr = ClearOutputBuffer( stream );
if( hr != DS_OK )
{
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( hr );
goto error;
}
if( stream->streamRepresentation.streamCallback && (stream->streamFlags & paPrimeOutputBuffersUsingStreamCallback) )
{
stream->callbackFlags = paPrimingOutput;
TimeSlice( stream );
/* we ignore the return value from TimeSlice here and start the stream as usual.
The first timer callback will detect if the callback has completed. */
stream->callbackFlags = 0;
}
// Start the buffer playback in a loop.
if( stream->pDirectSoundOutputBuffer != NULL ) // FIXME: not sure this needs to be checked here
{
hr = IDirectSoundBuffer_Play( stream->pDirectSoundOutputBuffer, 0, 0, DSBPLAY_LOOPING );
DBUG(("PaHost_StartOutput: IDirectSoundBuffer_Play returned = 0x%X.\n", hr));
if( hr != DS_OK )
{
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( hr );
goto error;
}
stream->outputIsRunning = TRUE;
}
}
if( stream->streamRepresentation.streamCallback )
{
TIMECAPS timecaps;
int timerPeriodMs = (int)(stream->pollingPeriodSeconds * MSECS_PER_SECOND);
if( timerPeriodMs < 1 )
timerPeriodMs = 1;
/* set windows scheduler granularity only as fine as needed, no finer */
/* Although this is not fully documented by MS, it appears that
timeBeginPeriod() affects the scheduling granulatity of all timers
including Waitable Timer Objects. So we always call timeBeginPeriod, whether
we're using an MM timer callback via timeSetEvent or not.
*/
assert( stream->systemTimerResolutionPeriodMs == 0 );
if( timeGetDevCaps( &timecaps, sizeof(TIMECAPS) ) == MMSYSERR_NOERROR && timecaps.wPeriodMin > 0 )
{
/* aim for resolution 4 times higher than polling rate */
stream->systemTimerResolutionPeriodMs = (UINT)((stream->pollingPeriodSeconds * MSECS_PER_SECOND) * .25);
if( stream->systemTimerResolutionPeriodMs < timecaps.wPeriodMin )
stream->systemTimerResolutionPeriodMs = timecaps.wPeriodMin;
if( stream->systemTimerResolutionPeriodMs > timecaps.wPeriodMax )
stream->systemTimerResolutionPeriodMs = timecaps.wPeriodMax;
if( timeBeginPeriod( stream->systemTimerResolutionPeriodMs ) != MMSYSERR_NOERROR )
stream->systemTimerResolutionPeriodMs = 0; /* timeBeginPeriod failed, so we don't need to call timeEndPeriod() later */
}
#ifdef PA_WIN_DS_USE_WMME_TIMER
/* Create timer that will wake us up so we can fill the DSound buffer. */
/* We have deprecated timeSetEvent because all MM timer callbacks
are serialised onto a single thread. Which creates problems with multiple
PA streams, or when also using timers for other time critical tasks
*/
stream->timerID = timeSetEvent( timerPeriodMs, stream->systemTimerResolutionPeriodMs, (LPTIMECALLBACK) TimerCallback,
(DWORD_PTR) stream, TIME_PERIODIC | TIME_KILL_SYNCHRONOUS );
if( stream->timerID == 0 )
{
stream->isActive = 0;
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( GetLastError() );
goto error;
}
#else
/* Create processing thread which calls TimerCallback */
stream->processingThread = CREATE_THREAD( 0, 0, ProcessingThreadProc, stream, 0, &stream->processingThreadId );
if( !stream->processingThread )
{
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( GetLastError() );
goto error;
}
if( !SetThreadPriority( stream->processingThread, THREAD_PRIORITY_TIME_CRITICAL ) )
{
result = paUnanticipatedHostError;
PA_DS_SET_LAST_DIRECTSOUND_ERROR( GetLastError() );
goto error;
}
#endif
}
stream->isActive = 1;
stream->isStarted = 1;
assert( result == paNoError );
return result;
error:
if( stream->pDirectSoundOutputBuffer != NULL && stream->outputIsRunning )
IDirectSoundBuffer_Stop( stream->pDirectSoundOutputBuffer );
stream->outputIsRunning = FALSE;
#ifndef PA_WIN_DS_USE_WMME_TIMER
if( stream->processingThread )
{
#ifdef CLOSE_THREAD_HANDLE
CLOSE_THREAD_HANDLE( stream->processingThread ); /* Delete thread. */
#endif
stream->processingThread = NULL;
}
#endif
return result;
}
/***********************************************************************************/
static PaError StopStream( PaStream *s )
{
PaError result = paNoError;
PaWinDsStream *stream = (PaWinDsStream*)s;
HRESULT hr;
int timeoutMsec;
if( stream->streamRepresentation.streamCallback )
{
stream->stopProcessing = 1;
/* Set timeout at 4 times maximum time we might wait. */
timeoutMsec = (int) (4 * MSECS_PER_SECOND * (stream->hostBufferSizeFrames / stream->streamRepresentation.streamInfo.sampleRate));
WaitForSingleObject( stream->processingCompleted, timeoutMsec );
}
#ifdef PA_WIN_DS_USE_WMME_TIMER
if( stream->timerID != 0 )
{
timeKillEvent(stream->timerID); /* Stop callback timer. */
stream->timerID = 0;
}
#else
if( stream->processingThread )
{
if( WaitForSingleObject( stream->processingThreadCompleted, 30*100 ) == WAIT_TIMEOUT )
return paUnanticipatedHostError;
#ifdef CLOSE_THREAD_HANDLE
CloseHandle( stream->processingThread ); /* Delete thread. */
stream->processingThread = NULL;
#endif
}
#endif
if( stream->systemTimerResolutionPeriodMs > 0 ){
timeEndPeriod( stream->systemTimerResolutionPeriodMs );
stream->systemTimerResolutionPeriodMs = 0;
}
if( stream->bufferProcessor.outputChannelCount > 0 )
{
// Stop the buffer playback
if( stream->pDirectSoundOutputBuffer != NULL )
{
stream->outputIsRunning = FALSE;
// FIXME: what happens if IDirectSoundBuffer_Stop returns an error?
hr = IDirectSoundBuffer_Stop( stream->pDirectSoundOutputBuffer );
if( stream->pDirectSoundPrimaryBuffer )
IDirectSoundBuffer_Stop( stream->pDirectSoundPrimaryBuffer ); /* FIXME we never started the primary buffer so I'm not sure we need to stop it */
}
}
if( stream->bufferProcessor.inputChannelCount > 0 )
{
// Stop the buffer capture
if( stream->pDirectSoundInputBuffer != NULL )
{
// FIXME: what happens if IDirectSoundCaptureBuffer_Stop returns an error?
hr = IDirectSoundCaptureBuffer_Stop( stream->pDirectSoundInputBuffer );
}
}
stream->isStarted = 0;
return result;
}
/***********************************************************************************/
static PaError AbortStream( PaStream *s )
{
PaWinDsStream *stream = (PaWinDsStream*)s;
stream->abortProcessing = 1;
return StopStream( s );
}
/***********************************************************************************/
static PaError IsStreamStopped( PaStream *s )
{
PaWinDsStream *stream = (PaWinDsStream*)s;
return !stream->isStarted;
}
/***********************************************************************************/
static PaError IsStreamActive( PaStream *s )
{
PaWinDsStream *stream = (PaWinDsStream*)s;
return stream->isActive;
}
/***********************************************************************************/
static PaTime GetStreamTime( PaStream *s )
{
/* suppress unused variable warnings */
(void) s;
return PaUtil_GetTime();
}
/***********************************************************************************/
static double GetStreamCpuLoad( PaStream* s )
{
PaWinDsStream *stream = (PaWinDsStream*)s;
return PaUtil_GetCpuLoad( &stream->cpuLoadMeasurer );
}
/***********************************************************************************
As separate stream interfaces are used for blocking and callback
streams, the following functions can be guaranteed to only be called
for blocking streams.
*/
static PaError ReadStream( PaStream* s,
void *buffer,
unsigned long frames )
{
PaWinDsStream *stream = (PaWinDsStream*)s;
/* suppress unused variable warnings */
(void) buffer;
(void) frames;
(void) stream;
/* IMPLEMENT ME, see portaudio.h for required behavior*/
return paNoError;
}
/***********************************************************************************/
static PaError WriteStream( PaStream* s,
const void *buffer,
unsigned long frames )
{
PaWinDsStream *stream = (PaWinDsStream*)s;
/* suppress unused variable warnings */
(void) buffer;
(void) frames;
(void) stream;
/* IMPLEMENT ME, see portaudio.h for required behavior*/
return paNoError;
}
/***********************************************************************************/
static signed long GetStreamReadAvailable( PaStream* s )
{
PaWinDsStream *stream = (PaWinDsStream*)s;
/* suppress unused variable warnings */
(void) stream;
/* IMPLEMENT ME, see portaudio.h for required behavior*/
return 0;
}
/***********************************************************************************/
static signed long GetStreamWriteAvailable( PaStream* s )
{
PaWinDsStream *stream = (PaWinDsStream*)s;
/* suppress unused variable warnings */
(void) stream;
/* IMPLEMENT ME, see portaudio.h for required behavior*/
return 0;
}