amarchheda's picture
inital commit
83418c6
raw
history blame
174 kB
/*
* $Id$
* PortAudio Portable Real-Time Audio Library
* Latest Version at: http://www.portaudio.com
* ALSA implementation by Joshua Haberman and Arve Knudsen
*
* Copyright (c) 2002 Joshua Haberman <[email protected]>
* Copyright (c) 2005-2009 Arve Knudsen <[email protected]>
* Copyright (c) 2008 Kevin Kofler <[email protected]>
*
* Based on the Open Source API proposed by Ross Bencina
* Copyright (c) 1999-2002 Ross Bencina, Phil Burk
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* The text above constitutes the entire PortAudio license; however,
* the PortAudio community also makes the following non-binding requests:
*
* Any person wishing to distribute modifications to the Software is
* requested to send the modifications to the original developer so that
* they can be incorporated into the canonical version. It is also
* requested that these non-binding requests be included along with the
* license above.
*/
/**
@file
@ingroup hostapi_src
*/
#define ALSA_PCM_NEW_HW_PARAMS_API
#define ALSA_PCM_NEW_SW_PARAMS_API
#include <alsa/asoundlib.h>
#undef ALSA_PCM_NEW_HW_PARAMS_API
#undef ALSA_PCM_NEW_SW_PARAMS_API
#include <sys/poll.h>
#include <string.h> /* strlen() */
#include <limits.h>
#include <math.h>
#include <pthread.h>
#include <signal.h>
#include <time.h>
#include <sys/mman.h>
#include <signal.h> /* For sig_atomic_t */
#ifdef PA_ALSA_DYNAMIC
#include <dlfcn.h> /* For dlXXX functions */
#endif
#include "portaudio.h"
#include "pa_util.h"
#include "pa_unix_util.h"
#include "pa_allocation.h"
#include "pa_hostapi.h"
#include "pa_stream.h"
#include "pa_cpuload.h"
#include "pa_process.h"
#include "pa_endianness.h"
#include "pa_debugprint.h"
#include "pa_linux_alsa.h"
/* Add missing define (for compatibility with older ALSA versions) */
#ifndef SND_PCM_TSTAMP_ENABLE
#define SND_PCM_TSTAMP_ENABLE SND_PCM_TSTAMP_MMAP
#endif
/* Combine version elements into a single (unsigned) integer */
#define ALSA_VERSION_INT(major, minor, subminor) ((major << 16) | (minor << 8) | subminor)
/* The acceptable tolerance of sample rate set, to that requested (as a ratio, eg 50 is 2%, 100 is 1%) */
#define RATE_MAX_DEVIATE_RATIO 100
/* Defines Alsa function types and pointers to these functions. */
#define _PA_DEFINE_FUNC(x) typedef typeof(x) x##_ft; static x##_ft *alsa_##x = 0
/* Alloca helper. */
#define __alsa_snd_alloca(ptr,type) do { size_t __alsa_alloca_size = alsa_##type##_sizeof(); (*ptr) = (type##_t *) alloca(__alsa_alloca_size); memset(*ptr, 0, __alsa_alloca_size); } while (0)
_PA_DEFINE_FUNC(snd_pcm_open);
_PA_DEFINE_FUNC(snd_pcm_close);
_PA_DEFINE_FUNC(snd_pcm_nonblock);
_PA_DEFINE_FUNC(snd_pcm_frames_to_bytes);
_PA_DEFINE_FUNC(snd_pcm_prepare);
_PA_DEFINE_FUNC(snd_pcm_start);
_PA_DEFINE_FUNC(snd_pcm_resume);
_PA_DEFINE_FUNC(snd_pcm_wait);
_PA_DEFINE_FUNC(snd_pcm_state);
_PA_DEFINE_FUNC(snd_pcm_avail_update);
_PA_DEFINE_FUNC(snd_pcm_areas_silence);
_PA_DEFINE_FUNC(snd_pcm_mmap_begin);
_PA_DEFINE_FUNC(snd_pcm_mmap_commit);
_PA_DEFINE_FUNC(snd_pcm_readi);
_PA_DEFINE_FUNC(snd_pcm_readn);
_PA_DEFINE_FUNC(snd_pcm_writei);
_PA_DEFINE_FUNC(snd_pcm_writen);
_PA_DEFINE_FUNC(snd_pcm_drain);
_PA_DEFINE_FUNC(snd_pcm_recover);
_PA_DEFINE_FUNC(snd_pcm_drop);
_PA_DEFINE_FUNC(snd_pcm_area_copy);
_PA_DEFINE_FUNC(snd_pcm_poll_descriptors);
_PA_DEFINE_FUNC(snd_pcm_poll_descriptors_count);
_PA_DEFINE_FUNC(snd_pcm_poll_descriptors_revents);
_PA_DEFINE_FUNC(snd_pcm_format_size);
_PA_DEFINE_FUNC(snd_pcm_link);
_PA_DEFINE_FUNC(snd_pcm_delay);
_PA_DEFINE_FUNC(snd_pcm_hw_params_sizeof);
_PA_DEFINE_FUNC(snd_pcm_hw_params_malloc);
_PA_DEFINE_FUNC(snd_pcm_hw_params_free);
_PA_DEFINE_FUNC(snd_pcm_hw_params_any);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_access);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_format);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_channels);
//_PA_DEFINE_FUNC(snd_pcm_hw_params_set_periods_near);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_rate_near); //!!!
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_rate);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_rate_resample);
//_PA_DEFINE_FUNC(snd_pcm_hw_params_set_buffer_time_near);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_buffer_size);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_buffer_size_near); //!!!
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_buffer_size_min);
//_PA_DEFINE_FUNC(snd_pcm_hw_params_set_period_time_near);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_period_size_near);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_periods_integer);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_periods_min);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_buffer_size);
//_PA_DEFINE_FUNC(snd_pcm_hw_params_get_period_size);
//_PA_DEFINE_FUNC(snd_pcm_hw_params_get_access);
//_PA_DEFINE_FUNC(snd_pcm_hw_params_get_periods);
//_PA_DEFINE_FUNC(snd_pcm_hw_params_get_rate);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_channels_min);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_channels_max);
_PA_DEFINE_FUNC(snd_pcm_hw_params_test_period_size);
_PA_DEFINE_FUNC(snd_pcm_hw_params_test_format);
_PA_DEFINE_FUNC(snd_pcm_hw_params_test_access);
_PA_DEFINE_FUNC(snd_pcm_hw_params_dump);
_PA_DEFINE_FUNC(snd_pcm_hw_params);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_periods_min);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_periods_max);
_PA_DEFINE_FUNC(snd_pcm_hw_params_set_period_size);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_period_size_min);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_period_size_max);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_buffer_size_max);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_rate_min);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_rate_max);
_PA_DEFINE_FUNC(snd_pcm_hw_params_get_rate_numden);
#define alsa_snd_pcm_hw_params_alloca(ptr) __alsa_snd_alloca(ptr, snd_pcm_hw_params)
_PA_DEFINE_FUNC(snd_pcm_sw_params_sizeof);
_PA_DEFINE_FUNC(snd_pcm_sw_params_malloc);
_PA_DEFINE_FUNC(snd_pcm_sw_params_current);
_PA_DEFINE_FUNC(snd_pcm_sw_params_set_avail_min);
_PA_DEFINE_FUNC(snd_pcm_sw_params);
_PA_DEFINE_FUNC(snd_pcm_sw_params_free);
_PA_DEFINE_FUNC(snd_pcm_sw_params_set_start_threshold);
_PA_DEFINE_FUNC(snd_pcm_sw_params_set_stop_threshold);
_PA_DEFINE_FUNC(snd_pcm_sw_params_get_boundary);
_PA_DEFINE_FUNC(snd_pcm_sw_params_set_silence_threshold);
_PA_DEFINE_FUNC(snd_pcm_sw_params_set_silence_size);
_PA_DEFINE_FUNC(snd_pcm_sw_params_set_xfer_align);
_PA_DEFINE_FUNC(snd_pcm_sw_params_set_tstamp_mode);
#define alsa_snd_pcm_sw_params_alloca(ptr) __alsa_snd_alloca(ptr, snd_pcm_sw_params)
_PA_DEFINE_FUNC(snd_pcm_info);
_PA_DEFINE_FUNC(snd_pcm_info_sizeof);
_PA_DEFINE_FUNC(snd_pcm_info_malloc);
_PA_DEFINE_FUNC(snd_pcm_info_free);
_PA_DEFINE_FUNC(snd_pcm_info_set_device);
_PA_DEFINE_FUNC(snd_pcm_info_set_subdevice);
_PA_DEFINE_FUNC(snd_pcm_info_set_stream);
_PA_DEFINE_FUNC(snd_pcm_info_get_name);
_PA_DEFINE_FUNC(snd_pcm_info_get_card);
#define alsa_snd_pcm_info_alloca(ptr) __alsa_snd_alloca(ptr, snd_pcm_info)
_PA_DEFINE_FUNC(snd_ctl_pcm_next_device);
_PA_DEFINE_FUNC(snd_ctl_pcm_info);
_PA_DEFINE_FUNC(snd_ctl_open);
_PA_DEFINE_FUNC(snd_ctl_close);
_PA_DEFINE_FUNC(snd_ctl_card_info_malloc);
_PA_DEFINE_FUNC(snd_ctl_card_info_free);
_PA_DEFINE_FUNC(snd_ctl_card_info);
_PA_DEFINE_FUNC(snd_ctl_card_info_sizeof);
_PA_DEFINE_FUNC(snd_ctl_card_info_get_name);
#define alsa_snd_ctl_card_info_alloca(ptr) __alsa_snd_alloca(ptr, snd_ctl_card_info)
_PA_DEFINE_FUNC(snd_config);
_PA_DEFINE_FUNC(snd_config_update);
_PA_DEFINE_FUNC(snd_config_search);
_PA_DEFINE_FUNC(snd_config_iterator_entry);
_PA_DEFINE_FUNC(snd_config_iterator_first);
_PA_DEFINE_FUNC(snd_config_iterator_end);
_PA_DEFINE_FUNC(snd_config_iterator_next);
_PA_DEFINE_FUNC(snd_config_get_string);
_PA_DEFINE_FUNC(snd_config_get_id);
_PA_DEFINE_FUNC(snd_config_update_free_global);
_PA_DEFINE_FUNC(snd_pcm_status);
_PA_DEFINE_FUNC(snd_pcm_status_sizeof);
_PA_DEFINE_FUNC(snd_pcm_status_get_tstamp);
_PA_DEFINE_FUNC(snd_pcm_status_get_state);
_PA_DEFINE_FUNC(snd_pcm_status_get_trigger_tstamp);
_PA_DEFINE_FUNC(snd_pcm_status_get_delay);
#define alsa_snd_pcm_status_alloca(ptr) __alsa_snd_alloca(ptr, snd_pcm_status)
_PA_DEFINE_FUNC(snd_card_next);
_PA_DEFINE_FUNC(snd_asoundlib_version);
_PA_DEFINE_FUNC(snd_strerror);
_PA_DEFINE_FUNC(snd_output_stdio_attach);
#define alsa_snd_config_for_each(pos, next, node)\
for (pos = alsa_snd_config_iterator_first(node),\
next = alsa_snd_config_iterator_next(pos);\
pos != alsa_snd_config_iterator_end(node); pos = next, next = alsa_snd_config_iterator_next(pos))
#undef _PA_DEFINE_FUNC
/* Redefine 'PA_ALSA_PATHNAME' to a different Alsa library name if desired. */
#ifndef PA_ALSA_PATHNAME
#define PA_ALSA_PATHNAME "libasound.so"
#endif
static const char *g_AlsaLibName = PA_ALSA_PATHNAME;
/* Handle to dynamically loaded library. */
static void *g_AlsaLib = NULL;
#ifdef PA_ALSA_DYNAMIC
#define _PA_LOCAL_IMPL(x) __pa_local_##x
int _PA_LOCAL_IMPL(snd_pcm_hw_params_set_rate_near) (snd_pcm_t *pcm, snd_pcm_hw_params_t *params, unsigned int *val, int *dir)
{
int ret;
if(( ret = alsa_snd_pcm_hw_params_set_rate(pcm, params, (*val), (*dir)) ) < 0 )
return ret;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_set_buffer_size_near) (snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_uframes_t *val)
{
int ret;
if(( ret = alsa_snd_pcm_hw_params_set_buffer_size(pcm, params, (*val)) ) < 0 )
return ret;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_set_period_size_near) (snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_uframes_t *val, int *dir)
{
int ret;
if(( ret = alsa_snd_pcm_hw_params_set_period_size(pcm, params, (*val), (*dir)) ) < 0 )
return ret;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_channels_min) (const snd_pcm_hw_params_t *params, unsigned int *val)
{
(*val) = 1;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_channels_max) (const snd_pcm_hw_params_t *params, unsigned int *val)
{
(*val) = 2;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_periods_min) (const snd_pcm_hw_params_t *params, unsigned int *val, int *dir)
{
(*val) = 2;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_periods_max) (const snd_pcm_hw_params_t *params, unsigned int *val, int *dir)
{
(*val) = 8;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_period_size_min) (const snd_pcm_hw_params_t *params, snd_pcm_uframes_t *frames, int *dir)
{
(*frames) = 64;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_period_size_max) (const snd_pcm_hw_params_t *params, snd_pcm_uframes_t *frames, int *dir)
{
(*frames) = 512;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_buffer_size_max) (const snd_pcm_hw_params_t *params, snd_pcm_uframes_t *val)
{
int ret;
int dir = 0;
snd_pcm_uframes_t pmax = 0;
unsigned int pcnt = 0;
dir = 0;
if(( ret = _PA_LOCAL_IMPL(snd_pcm_hw_params_get_period_size_max)(params, &pmax, &dir) ) < 0 )
return ret;
dir = 0;
if(( ret = _PA_LOCAL_IMPL(snd_pcm_hw_params_get_periods_max)(params, &pcnt, &dir) ) < 0 )
return ret;
(*val) = pmax * pcnt;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_rate_min) (const snd_pcm_hw_params_t *params, unsigned int *val, int *dir)
{
(*val) = 44100;
return 0;
}
int _PA_LOCAL_IMPL(snd_pcm_hw_params_get_rate_max) (const snd_pcm_hw_params_t *params, unsigned int *val, int *dir)
{
(*val) = 44100;
return 0;
}
#endif // PA_ALSA_DYNAMIC
/* Trying to load Alsa library dynamically if 'PA_ALSA_DYNAMIC' is defined, othervise
will link during compilation.
*/
static int PaAlsa_LoadLibrary()
{
#ifdef PA_ALSA_DYNAMIC
PA_DEBUG(( "%s: loading ALSA library file - %s\n", __FUNCTION__, g_AlsaLibName ));
dlerror();
g_AlsaLib = dlopen(g_AlsaLibName, (RTLD_NOW|RTLD_GLOBAL) );
if (g_AlsaLib == NULL)
{
PA_DEBUG(( "%s: failed dlopen() ALSA library file - %s, error: %s\n", __FUNCTION__, g_AlsaLibName, dlerror() ));
return 0;
}
PA_DEBUG(( "%s: loading ALSA API\n", __FUNCTION__ ));
#define _PA_LOAD_FUNC(x) do { \
alsa_##x = dlsym( g_AlsaLib, #x ); \
if( alsa_##x == NULL ) { \
PA_DEBUG(( "%s: symbol [%s] not found in - %s, error: %s\n", __FUNCTION__, #x, g_AlsaLibName, dlerror() )); }\
} while(0)
#else
#define _PA_LOAD_FUNC(x) alsa_##x = &x
#endif
_PA_LOAD_FUNC(snd_pcm_open);
_PA_LOAD_FUNC(snd_pcm_close);
_PA_LOAD_FUNC(snd_pcm_nonblock);
_PA_LOAD_FUNC(snd_pcm_frames_to_bytes);
_PA_LOAD_FUNC(snd_pcm_prepare);
_PA_LOAD_FUNC(snd_pcm_start);
_PA_LOAD_FUNC(snd_pcm_resume);
_PA_LOAD_FUNC(snd_pcm_wait);
_PA_LOAD_FUNC(snd_pcm_state);
_PA_LOAD_FUNC(snd_pcm_avail_update);
_PA_LOAD_FUNC(snd_pcm_areas_silence);
_PA_LOAD_FUNC(snd_pcm_mmap_begin);
_PA_LOAD_FUNC(snd_pcm_mmap_commit);
_PA_LOAD_FUNC(snd_pcm_readi);
_PA_LOAD_FUNC(snd_pcm_readn);
_PA_LOAD_FUNC(snd_pcm_writei);
_PA_LOAD_FUNC(snd_pcm_writen);
_PA_LOAD_FUNC(snd_pcm_drain);
_PA_LOAD_FUNC(snd_pcm_recover);
_PA_LOAD_FUNC(snd_pcm_drop);
_PA_LOAD_FUNC(snd_pcm_area_copy);
_PA_LOAD_FUNC(snd_pcm_poll_descriptors);
_PA_LOAD_FUNC(snd_pcm_poll_descriptors_count);
_PA_LOAD_FUNC(snd_pcm_poll_descriptors_revents);
_PA_LOAD_FUNC(snd_pcm_format_size);
_PA_LOAD_FUNC(snd_pcm_link);
_PA_LOAD_FUNC(snd_pcm_delay);
_PA_LOAD_FUNC(snd_pcm_hw_params_sizeof);
_PA_LOAD_FUNC(snd_pcm_hw_params_malloc);
_PA_LOAD_FUNC(snd_pcm_hw_params_free);
_PA_LOAD_FUNC(snd_pcm_hw_params_any);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_access);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_format);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_channels);
// _PA_LOAD_FUNC(snd_pcm_hw_params_set_periods_near);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_rate_near);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_rate);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_rate_resample);
// _PA_LOAD_FUNC(snd_pcm_hw_params_set_buffer_time_near);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_buffer_size);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_buffer_size_near);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_buffer_size_min);
// _PA_LOAD_FUNC(snd_pcm_hw_params_set_period_time_near);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_period_size_near);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_periods_integer);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_periods_min);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_buffer_size);
// _PA_LOAD_FUNC(snd_pcm_hw_params_get_period_size);
// _PA_LOAD_FUNC(snd_pcm_hw_params_get_access);
// _PA_LOAD_FUNC(snd_pcm_hw_params_get_periods);
// _PA_LOAD_FUNC(snd_pcm_hw_params_get_rate);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_channels_min);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_channels_max);
_PA_LOAD_FUNC(snd_pcm_hw_params_test_period_size);
_PA_LOAD_FUNC(snd_pcm_hw_params_test_format);
_PA_LOAD_FUNC(snd_pcm_hw_params_test_access);
_PA_LOAD_FUNC(snd_pcm_hw_params_dump);
_PA_LOAD_FUNC(snd_pcm_hw_params);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_periods_min);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_periods_max);
_PA_LOAD_FUNC(snd_pcm_hw_params_set_period_size);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_period_size_min);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_period_size_max);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_buffer_size_max);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_rate_min);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_rate_max);
_PA_LOAD_FUNC(snd_pcm_hw_params_get_rate_numden);
_PA_LOAD_FUNC(snd_pcm_sw_params_sizeof);
_PA_LOAD_FUNC(snd_pcm_sw_params_malloc);
_PA_LOAD_FUNC(snd_pcm_sw_params_current);
_PA_LOAD_FUNC(snd_pcm_sw_params_set_avail_min);
_PA_LOAD_FUNC(snd_pcm_sw_params);
_PA_LOAD_FUNC(snd_pcm_sw_params_free);
_PA_LOAD_FUNC(snd_pcm_sw_params_set_start_threshold);
_PA_LOAD_FUNC(snd_pcm_sw_params_set_stop_threshold);
_PA_LOAD_FUNC(snd_pcm_sw_params_get_boundary);
_PA_LOAD_FUNC(snd_pcm_sw_params_set_silence_threshold);
_PA_LOAD_FUNC(snd_pcm_sw_params_set_silence_size);
_PA_LOAD_FUNC(snd_pcm_sw_params_set_xfer_align);
_PA_LOAD_FUNC(snd_pcm_sw_params_set_tstamp_mode);
_PA_LOAD_FUNC(snd_pcm_info);
_PA_LOAD_FUNC(snd_pcm_info_sizeof);
_PA_LOAD_FUNC(snd_pcm_info_malloc);
_PA_LOAD_FUNC(snd_pcm_info_free);
_PA_LOAD_FUNC(snd_pcm_info_set_device);
_PA_LOAD_FUNC(snd_pcm_info_set_subdevice);
_PA_LOAD_FUNC(snd_pcm_info_set_stream);
_PA_LOAD_FUNC(snd_pcm_info_get_name);
_PA_LOAD_FUNC(snd_pcm_info_get_card);
_PA_LOAD_FUNC(snd_ctl_pcm_next_device);
_PA_LOAD_FUNC(snd_ctl_pcm_info);
_PA_LOAD_FUNC(snd_ctl_open);
_PA_LOAD_FUNC(snd_ctl_close);
_PA_LOAD_FUNC(snd_ctl_card_info_malloc);
_PA_LOAD_FUNC(snd_ctl_card_info_free);
_PA_LOAD_FUNC(snd_ctl_card_info);
_PA_LOAD_FUNC(snd_ctl_card_info_sizeof);
_PA_LOAD_FUNC(snd_ctl_card_info_get_name);
_PA_LOAD_FUNC(snd_config);
_PA_LOAD_FUNC(snd_config_update);
_PA_LOAD_FUNC(snd_config_search);
_PA_LOAD_FUNC(snd_config_iterator_entry);
_PA_LOAD_FUNC(snd_config_iterator_first);
_PA_LOAD_FUNC(snd_config_iterator_end);
_PA_LOAD_FUNC(snd_config_iterator_next);
_PA_LOAD_FUNC(snd_config_get_string);
_PA_LOAD_FUNC(snd_config_get_id);
_PA_LOAD_FUNC(snd_config_update_free_global);
_PA_LOAD_FUNC(snd_pcm_status);
_PA_LOAD_FUNC(snd_pcm_status_sizeof);
_PA_LOAD_FUNC(snd_pcm_status_get_tstamp);
_PA_LOAD_FUNC(snd_pcm_status_get_state);
_PA_LOAD_FUNC(snd_pcm_status_get_trigger_tstamp);
_PA_LOAD_FUNC(snd_pcm_status_get_delay);
_PA_LOAD_FUNC(snd_card_next);
_PA_LOAD_FUNC(snd_asoundlib_version);
_PA_LOAD_FUNC(snd_strerror);
_PA_LOAD_FUNC(snd_output_stdio_attach);
#undef _PA_LOAD_FUNC
#ifdef PA_ALSA_DYNAMIC
PA_DEBUG(( "%s: loaded ALSA API - ok\n", __FUNCTION__ ));
#define _PA_VALIDATE_LOAD_REPLACEMENT(x)\
do {\
if( alsa_##x == NULL )\
{\
alsa_##x = &_PA_LOCAL_IMPL(x);\
PA_DEBUG(( "%s: replacing [%s] with local implementation\n", __FUNCTION__, #x ));\
}\
} while (0)
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_set_rate_near);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_set_buffer_size_near);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_set_period_size_near);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_channels_min);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_channels_max);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_periods_min);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_periods_max);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_period_size_min);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_period_size_max);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_buffer_size_max);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_rate_min);
_PA_VALIDATE_LOAD_REPLACEMENT(snd_pcm_hw_params_get_rate_max);
#undef _PA_LOCAL_IMPL
#undef _PA_VALIDATE_LOAD_REPLACEMENT
#endif // PA_ALSA_DYNAMIC
return 1;
}
void PaAlsa_SetLibraryPathName( const char *pathName )
{
#ifdef PA_ALSA_DYNAMIC
g_AlsaLibName = pathName;
#else
(void)pathName;
#endif
}
/* Close handle to Alsa library. */
static void PaAlsa_CloseLibrary()
{
#ifdef PA_ALSA_DYNAMIC
dlclose(g_AlsaLib);
g_AlsaLib = NULL;
#endif
}
/* Check return value of ALSA function, and map it to PaError */
#define ENSURE_(expr, code) \
do { \
int __pa_unsure_error_id;\
if( UNLIKELY( (__pa_unsure_error_id = (expr)) < 0 ) ) \
{ \
/* PaUtil_SetLastHostErrorInfo should only be used in the main thread */ \
if( (code) == paUnanticipatedHostError && pthread_equal( pthread_self(), paUnixMainThread) ) \
{ \
PaUtil_SetLastHostErrorInfo( paALSA, __pa_unsure_error_id, alsa_snd_strerror( __pa_unsure_error_id ) ); \
} \
PaUtil_DebugPrint( "Expression '" #expr "' failed in '" __FILE__ "', line: " STRINGIZE( __LINE__ ) "\n" ); \
if( (code) == paUnanticipatedHostError ) \
PA_DEBUG(( "Host error description: %s\n", alsa_snd_strerror( __pa_unsure_error_id ) )); \
result = (code); \
goto error; \
} \
} while (0)
#define ASSERT_CALL_(expr, success) \
do {\
int __pa_assert_error_id;\
__pa_assert_error_id = (expr);\
assert( success == __pa_assert_error_id );\
} while (0)
static int numPeriods_ = 4;
static int busyRetries_ = 100;
int PaAlsa_SetNumPeriods( int numPeriods )
{
numPeriods_ = numPeriods;
return paNoError;
}
typedef enum
{
StreamDirection_In,
StreamDirection_Out
} StreamDirection;
typedef struct
{
PaSampleFormat hostSampleFormat;
int numUserChannels, numHostChannels;
int userInterleaved, hostInterleaved;
int canMmap;
void *nonMmapBuffer;
unsigned int nonMmapBufferSize;
PaDeviceIndex device; /* Keep the device index */
int deviceIsPlug; /* Distinguish plug types from direct 'hw:' devices */
int useReventFix; /* Alsa older than 1.0.16, plug devices need a fix */
snd_pcm_t *pcm;
snd_pcm_uframes_t framesPerPeriod, alsaBufferSize;
snd_pcm_format_t nativeFormat;
unsigned int nfds;
int ready; /* Marked ready from poll */
void **userBuffers;
snd_pcm_uframes_t offset;
StreamDirection streamDir;
snd_pcm_channel_area_t *channelAreas; /* Needed for channel adaption */
} PaAlsaStreamComponent;
/* Implementation specific stream structure */
typedef struct PaAlsaStream
{
PaUtilStreamRepresentation streamRepresentation;
PaUtilCpuLoadMeasurer cpuLoadMeasurer;
PaUtilBufferProcessor bufferProcessor;
PaUnixThread thread;
unsigned long framesPerUserBuffer, maxFramesPerHostBuffer;
int primeBuffers;
int callbackMode; /* bool: are we running in callback mode? */
int pcmsSynced; /* Have we successfully synced pcms */
int rtSched;
/* the callback thread uses these to poll the sound device(s), waiting
* for data to be ready/available */
struct pollfd* pfds;
int pollTimeout;
/* Used in communication between threads */
volatile sig_atomic_t callback_finished; /* bool: are we in the "callback finished" state? */
volatile sig_atomic_t callbackAbort; /* Drop frames? */
volatile sig_atomic_t isActive; /* Is stream in active state? (Between StartStream and StopStream || !paContinue) */
PaUnixMutex stateMtx; /* Used to synchronize access to stream state */
int neverDropInput;
PaTime underrun;
PaTime overrun;
PaAlsaStreamComponent capture, playback;
}
PaAlsaStream;
/* PaAlsaHostApiRepresentation - host api datastructure specific to this implementation */
typedef struct PaAlsaHostApiRepresentation
{
PaUtilHostApiRepresentation baseHostApiRep;
PaUtilStreamInterface callbackStreamInterface;
PaUtilStreamInterface blockingStreamInterface;
PaUtilAllocationGroup *allocations;
PaHostApiIndex hostApiIndex;
PaUint32 alsaLibVersion; /* Retrieved from the library at run-time */
}
PaAlsaHostApiRepresentation;
typedef struct PaAlsaDeviceInfo
{
PaDeviceInfo baseDeviceInfo;
char *alsaName;
int isPlug;
int minInputChannels;
int minOutputChannels;
}
PaAlsaDeviceInfo;
/* prototypes for functions declared in this file */
static void Terminate( struct PaUtilHostApiRepresentation *hostApi );
static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate );
static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi,
PaStream** s,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate,
unsigned long framesPerBuffer,
PaStreamFlags streamFlags,
PaStreamCallback *callback,
void *userData );
static PaError CloseStream( PaStream* stream );
static PaError StartStream( PaStream *stream );
static PaError StopStream( PaStream *stream );
static PaError AbortStream( PaStream *stream );
static PaError IsStreamStopped( PaStream *s );
static PaError IsStreamActive( PaStream *stream );
static PaTime GetStreamTime( PaStream *stream );
static double GetStreamCpuLoad( PaStream* stream );
static PaError BuildDeviceList( PaAlsaHostApiRepresentation *hostApi );
static int SetApproximateSampleRate( snd_pcm_t *pcm, snd_pcm_hw_params_t *hwParams, double sampleRate );
static int GetExactSampleRate( snd_pcm_hw_params_t *hwParams, double *sampleRate );
static PaUint32 PaAlsaVersionNum(void);
/* Callback prototypes */
static void *CallbackThreadFunc( void *userData );
/* Blocking prototypes */
static signed long GetStreamReadAvailable( PaStream* s );
static signed long GetStreamWriteAvailable( PaStream* s );
static PaError ReadStream( PaStream* stream, void *buffer, unsigned long frames );
static PaError WriteStream( PaStream* stream, const void *buffer, unsigned long frames );
static const PaAlsaDeviceInfo *GetDeviceInfo( const PaUtilHostApiRepresentation *hostApi, int device )
{
return (const PaAlsaDeviceInfo *)hostApi->deviceInfos[device];
}
/** Uncommented because AlsaErrorHandler is unused for anything good yet. If AlsaErrorHandler is
to be used, do not forget to register this callback in PaAlsa_Initialize, and unregister in Terminate.
*/
/*static void AlsaErrorHandler(const char *file, int line, const char *function, int err, const char *fmt, ...)
{
}*/
PaError PaAlsa_Initialize( PaUtilHostApiRepresentation **hostApi, PaHostApiIndex hostApiIndex )
{
PaError result = paNoError;
PaAlsaHostApiRepresentation *alsaHostApi = NULL;
/* Try loading Alsa library. */
if (!PaAlsa_LoadLibrary())
return paHostApiNotFound;
PA_UNLESS( alsaHostApi = (PaAlsaHostApiRepresentation*) PaUtil_AllocateMemory(
sizeof(PaAlsaHostApiRepresentation) ), paInsufficientMemory );
PA_UNLESS( alsaHostApi->allocations = PaUtil_CreateAllocationGroup(), paInsufficientMemory );
alsaHostApi->hostApiIndex = hostApiIndex;
alsaHostApi->alsaLibVersion = PaAlsaVersionNum();
*hostApi = (PaUtilHostApiRepresentation*)alsaHostApi;
(*hostApi)->info.structVersion = 1;
(*hostApi)->info.type = paALSA;
(*hostApi)->info.name = "ALSA";
(*hostApi)->Terminate = Terminate;
(*hostApi)->OpenStream = OpenStream;
(*hostApi)->IsFormatSupported = IsFormatSupported;
/** If AlsaErrorHandler is to be used, do not forget to unregister callback pointer in
Terminate function.
*/
/*ENSURE_( snd_lib_error_set_handler(AlsaErrorHandler), paUnanticipatedHostError );*/
PA_ENSURE( BuildDeviceList( alsaHostApi ) );
PaUtil_InitializeStreamInterface( &alsaHostApi->callbackStreamInterface,
CloseStream, StartStream,
StopStream, AbortStream,
IsStreamStopped, IsStreamActive,
GetStreamTime, GetStreamCpuLoad,
PaUtil_DummyRead, PaUtil_DummyWrite,
PaUtil_DummyGetReadAvailable,
PaUtil_DummyGetWriteAvailable );
PaUtil_InitializeStreamInterface( &alsaHostApi->blockingStreamInterface,
CloseStream, StartStream,
StopStream, AbortStream,
IsStreamStopped, IsStreamActive,
GetStreamTime, PaUtil_DummyGetCpuLoad,
ReadStream, WriteStream,
GetStreamReadAvailable,
GetStreamWriteAvailable );
PA_ENSURE( PaUnixThreading_Initialize() );
return result;
error:
if( alsaHostApi )
{
if( alsaHostApi->allocations )
{
PaUtil_FreeAllAllocations( alsaHostApi->allocations );
PaUtil_DestroyAllocationGroup( alsaHostApi->allocations );
}
PaUtil_FreeMemory( alsaHostApi );
}
return result;
}
static void Terminate( struct PaUtilHostApiRepresentation *hostApi )
{
PaAlsaHostApiRepresentation *alsaHostApi = (PaAlsaHostApiRepresentation*)hostApi;
assert( hostApi );
/** See AlsaErrorHandler and PaAlsa_Initialize for details.
*/
/*snd_lib_error_set_handler(NULL);*/
if( alsaHostApi->allocations )
{
PaUtil_FreeAllAllocations( alsaHostApi->allocations );
PaUtil_DestroyAllocationGroup( alsaHostApi->allocations );
}
PaUtil_FreeMemory( alsaHostApi );
alsa_snd_config_update_free_global();
/* Close Alsa library. */
PaAlsa_CloseLibrary();
}
/** Determine max channels and default latencies.
*
* This function provides functionality to grope an opened (might be opened for capture or playback) pcm device for
* traits like max channels, suitable default latencies and default sample rate. Upon error, max channels is set to zero,
* and a suitable result returned. The device is closed before returning.
*/
static PaError GropeDevice( snd_pcm_t* pcm, int isPlug, StreamDirection mode, int openBlocking,
PaAlsaDeviceInfo* devInfo )
{
PaError result = paNoError;
snd_pcm_hw_params_t *hwParams;
snd_pcm_uframes_t alsaBufferFrames, alsaPeriodFrames;
unsigned int minChans, maxChans;
int* minChannels, * maxChannels;
double * defaultLowLatency, * defaultHighLatency, * defaultSampleRate =
&devInfo->baseDeviceInfo.defaultSampleRate;
double defaultSr = *defaultSampleRate;
assert( pcm );
PA_DEBUG(( "%s: collecting info ..\n", __FUNCTION__ ));
if( StreamDirection_In == mode )
{
minChannels = &devInfo->minInputChannels;
maxChannels = &devInfo->baseDeviceInfo.maxInputChannels;
defaultLowLatency = &devInfo->baseDeviceInfo.defaultLowInputLatency;
defaultHighLatency = &devInfo->baseDeviceInfo.defaultHighInputLatency;
}
else
{
minChannels = &devInfo->minOutputChannels;
maxChannels = &devInfo->baseDeviceInfo.maxOutputChannels;
defaultLowLatency = &devInfo->baseDeviceInfo.defaultLowOutputLatency;
defaultHighLatency = &devInfo->baseDeviceInfo.defaultHighOutputLatency;
}
ENSURE_( alsa_snd_pcm_nonblock( pcm, 0 ), paUnanticipatedHostError );
alsa_snd_pcm_hw_params_alloca( &hwParams );
alsa_snd_pcm_hw_params_any( pcm, hwParams );
if( defaultSr >= 0 )
{
/* Could be that the device opened in one mode supports samplerates that the other mode wont have,
* so try again .. */
if( SetApproximateSampleRate( pcm, hwParams, defaultSr ) < 0 )
{
defaultSr = -1.;
alsa_snd_pcm_hw_params_any( pcm, hwParams ); /* Clear any params (rate) that might have been set */
PA_DEBUG(( "%s: Original default samplerate failed, trying again ..\n", __FUNCTION__ ));
}
}
if( defaultSr < 0. ) /* Default sample rate not set */
{
unsigned int sampleRate = 44100; /* Will contain approximate rate returned by alsa-lib */
/* Don't allow rate resampling when probing for the default rate (but ignore if this call fails) */
alsa_snd_pcm_hw_params_set_rate_resample( pcm, hwParams, 0 );
if( alsa_snd_pcm_hw_params_set_rate_near( pcm, hwParams, &sampleRate, NULL ) < 0 )
{
result = paUnanticipatedHostError;
goto error;
}
ENSURE_( GetExactSampleRate( hwParams, &defaultSr ), paUnanticipatedHostError );
}
ENSURE_( alsa_snd_pcm_hw_params_get_channels_min( hwParams, &minChans ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_hw_params_get_channels_max( hwParams, &maxChans ), paUnanticipatedHostError );
assert( maxChans <= INT_MAX );
assert( maxChans > 0 ); /* Weird linking issue could cause wrong version of ALSA symbols to be called,
resulting in zeroed values */
/* XXX: Limit to sensible number (ALSA plugins accept a crazy amount of channels)? */
if( isPlug && maxChans > 128 )
{
maxChans = 128;
PA_DEBUG(( "%s: Limiting number of plugin channels to %u\n", __FUNCTION__, maxChans ));
}
/* TWEAKME:
* Giving values for default min and max latency is not straightforward.
* * for low latency, we want to give the lowest value that will work reliably.
* This varies based on the sound card, kernel, CPU, etc. Better to give
* sub-optimal latency than to give a number too low and cause dropouts.
* * for high latency we want to give a large enough value that dropouts are basically impossible.
* This doesn't really require as much tweaking, since providing too large a number will
* just cause us to select the nearest setting that will work at stream config time.
*/
/* Try low latency values, (sometimes the buffer & period that result are larger) */
alsaBufferFrames = 512;
alsaPeriodFrames = 128;
ENSURE_( alsa_snd_pcm_hw_params_set_buffer_size_near( pcm, hwParams, &alsaBufferFrames ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_hw_params_set_period_size_near( pcm, hwParams, &alsaPeriodFrames, NULL ), paUnanticipatedHostError );
*defaultLowLatency = (double) (alsaBufferFrames - alsaPeriodFrames) / defaultSr;
/* Base the high latency case on values four times larger */
alsaBufferFrames = 2048;
alsaPeriodFrames = 512;
/* Have to reset hwParams, to set new buffer size; need to also set sample rate again */
ENSURE_( alsa_snd_pcm_hw_params_any( pcm, hwParams ), paUnanticipatedHostError );
ENSURE_( SetApproximateSampleRate( pcm, hwParams, defaultSr ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_hw_params_set_buffer_size_near( pcm, hwParams, &alsaBufferFrames ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_hw_params_set_period_size_near( pcm, hwParams, &alsaPeriodFrames, NULL ), paUnanticipatedHostError );
*defaultHighLatency = (double) (alsaBufferFrames - alsaPeriodFrames) / defaultSr;
*minChannels = (int)minChans;
*maxChannels = (int)maxChans;
*defaultSampleRate = defaultSr;
end:
alsa_snd_pcm_close( pcm );
return result;
error:
goto end;
}
/* Initialize device info with invalid values (maxInputChannels and maxOutputChannels are set to zero since these indicate
* whether input/output is available) */
static void InitializeDeviceInfo( PaDeviceInfo *deviceInfo )
{
deviceInfo->structVersion = -1;
deviceInfo->name = NULL;
deviceInfo->hostApi = -1;
deviceInfo->maxInputChannels = 0;
deviceInfo->maxOutputChannels = 0;
deviceInfo->defaultLowInputLatency = -1.;
deviceInfo->defaultLowOutputLatency = -1.;
deviceInfo->defaultHighInputLatency = -1.;
deviceInfo->defaultHighOutputLatency = -1.;
deviceInfo->defaultSampleRate = -1.;
}
/* Retrieve the version of the runtime Alsa-lib, as a single number equivalent to
* SND_LIB_VERSION. Only a version string is available ("a.b.c") so this has to be converted.
* Assume 'a' and 'b' are single digits only.
*/
static PaUint32 PaAlsaVersionNum(void)
{
char* verStr;
PaUint32 verNum;
verStr = (char*) alsa_snd_asoundlib_version();
verNum = ALSA_VERSION_INT( atoi(verStr), atoi(verStr + 2), atoi(verStr + 4) );
PA_DEBUG(( "ALSA version (build): " SND_LIB_VERSION_STR "\nALSA version (runtime): %s\n", verStr ));
return verNum;
}
/* Helper struct */
typedef struct
{
char *alsaName;
char *name;
int isPlug;
int hasPlayback;
int hasCapture;
} HwDevInfo;
HwDevInfo predefinedNames[] = {
{ "center_lfe", NULL, 0, 1, 0 },
/* { "default", NULL, 0, 1, 1 }, */
{ "dmix", NULL, 0, 1, 0 },
/* { "dpl", NULL, 0, 1, 0 }, */
/* { "dsnoop", NULL, 0, 0, 1 }, */
{ "front", NULL, 0, 1, 0 },
{ "iec958", NULL, 0, 1, 0 },
/* { "modem", NULL, 0, 1, 0 }, */
{ "rear", NULL, 0, 1, 0 },
{ "side", NULL, 0, 1, 0 },
/* { "spdif", NULL, 0, 0, 0 }, */
{ "surround40", NULL, 0, 1, 0 },
{ "surround41", NULL, 0, 1, 0 },
{ "surround50", NULL, 0, 1, 0 },
{ "surround51", NULL, 0, 1, 0 },
{ "surround71", NULL, 0, 1, 0 },
{ "AndroidPlayback_Earpiece_normal", NULL, 0, 1, 0 },
{ "AndroidPlayback_Speaker_normal", NULL, 0, 1, 0 },
{ "AndroidPlayback_Bluetooth_normal", NULL, 0, 1, 0 },
{ "AndroidPlayback_Headset_normal", NULL, 0, 1, 0 },
{ "AndroidPlayback_Speaker_Headset_normal", NULL, 0, 1, 0 },
{ "AndroidPlayback_Bluetooth-A2DP_normal", NULL, 0, 1, 0 },
{ "AndroidPlayback_ExtraDockSpeaker_normal", NULL, 0, 1, 0 },
{ "AndroidPlayback_TvOut_normal", NULL, 0, 1, 0 },
{ "AndroidRecord_Microphone", NULL, 0, 0, 1 },
{ "AndroidRecord_Earpiece_normal", NULL, 0, 0, 1 },
{ "AndroidRecord_Speaker_normal", NULL, 0, 0, 1 },
{ "AndroidRecord_Headset_normal", NULL, 0, 0, 1 },
{ "AndroidRecord_Bluetooth_normal", NULL, 0, 0, 1 },
{ "AndroidRecord_Speaker_Headset_normal", NULL, 0, 0, 1 },
{ NULL, NULL, 0, 1, 0 }
};
static const HwDevInfo *FindDeviceName( const char *name )
{
int i;
for( i = 0; predefinedNames[i].alsaName; i++ )
{
if( strcmp( name, predefinedNames[i].alsaName ) == 0 )
{
return &predefinedNames[i];
}
}
return NULL;
}
static PaError PaAlsa_StrDup( PaAlsaHostApiRepresentation *alsaApi,
char **dst,
const char *src)
{
PaError result = paNoError;
int len = strlen( src ) + 1;
/* PA_DEBUG(("PaStrDup %s %d\n", src, len)); */
PA_UNLESS( *dst = (char *)PaUtil_GroupAllocateMemory( alsaApi->allocations, len ),
paInsufficientMemory );
strncpy( *dst, src, len );
error:
return result;
}
/* Disregard some standard plugins
*/
static int IgnorePlugin( const char *pluginId )
{
static const char *ignoredPlugins[] = {"hw", "plughw", "plug", "dsnoop", "tee",
"file", "null", "shm", "cards", "rate_convert", NULL};
int i = 0;
if( getenv( "PA_ALSA_IGNORE_ALL_PLUGINS" ) && atoi( getenv( "PA_ALSA_IGNORE_ALL_PLUGINS") ) )
return 1;
while( ignoredPlugins[i] )
{
if( !strcmp( pluginId, ignoredPlugins[i] ) )
{
return 1;
}
++i;
}
return 0;
}
/* Skip past parts at the beginning of a (pcm) info name that are already in the card name, to avoid duplication */
static char *SkipCardDetailsInName( char *infoSkipName, char *cardRefName )
{
char *lastSpacePosn = infoSkipName;
/* Skip matching chars; but only in chunks separated by ' ' (not part words etc), so track lastSpacePosn */
while( *cardRefName )
{
while( *infoSkipName && *cardRefName && *infoSkipName == *cardRefName)
{
infoSkipName++;
cardRefName++;
if( *infoSkipName == ' ' || *infoSkipName == '\0' )
lastSpacePosn = infoSkipName;
}
infoSkipName = lastSpacePosn;
/* Look for another chunk; post-increment means ends pointing to next char */
while( *cardRefName && ( *cardRefName++ != ' ' ));
}
if( *infoSkipName == '\0' )
return "-"; /* The 2 names were identical; instead of a nul-string, return a marker string */
/* Now want to move to the first char after any spaces */
while( *lastSpacePosn && *lastSpacePosn == ' ' )
lastSpacePosn++;
/* Skip a single separator char if present in the remaining pcm name; (pa will add its own) */
if(( *lastSpacePosn == '-' || *lastSpacePosn == ':' ) && *(lastSpacePosn + 1) == ' ' )
lastSpacePosn += 2;
return lastSpacePosn;
}
/** Open PCM device.
*
* Wrapper around alsa_snd_pcm_open which may repeatedly retry opening a device if it is busy, for
* a certain time. This is because dmix may temporarily hold on to a device after it (dmix)
* has been opened and closed.
* @param mode: Open mode (e.g., SND_PCM_BLOCKING).
* @param waitOnBusy: Retry opening busy device for up to one second?
**/
static int OpenPcm( snd_pcm_t **pcmp, const char *name, snd_pcm_stream_t stream, int mode, int waitOnBusy )
{
int ret, tries = 0, maxTries = waitOnBusy ? busyRetries_ : 0;
ret = alsa_snd_pcm_open( pcmp, name, stream, mode );
for( tries = 0; tries < maxTries && -EBUSY == ret; ++tries )
{
Pa_Sleep( 10 );
ret = alsa_snd_pcm_open( pcmp, name, stream, mode );
if( -EBUSY != ret )
{
PA_DEBUG(( "%s: Successfully opened initially busy device after %d tries\n", __FUNCTION__, tries ));
}
}
if( -EBUSY == ret )
{
PA_DEBUG(( "%s: Failed to open busy device '%s'\n", __FUNCTION__, name ));
}
else
{
if( ret < 0 )
PA_DEBUG(( "%s: Opened device '%s' ptr[%p] - result: [%d:%s]\n", __FUNCTION__, name, *pcmp, ret, alsa_snd_strerror(ret) ));
}
return ret;
}
static PaError FillInDevInfo( PaAlsaHostApiRepresentation *alsaApi, HwDevInfo* deviceHwInfo, int blocking,
PaAlsaDeviceInfo* devInfo, int* devIdx )
{
PaError result = 0;
PaDeviceInfo *baseDeviceInfo = &devInfo->baseDeviceInfo;
snd_pcm_t *pcm = NULL;
PaUtilHostApiRepresentation *baseApi = &alsaApi->baseHostApiRep;
PA_DEBUG(( "%s: Filling device info for: %s\n", __FUNCTION__, deviceHwInfo->name ));
/* Zero fields */
InitializeDeviceInfo( baseDeviceInfo );
/* To determine device capabilities, we must open the device and query the
* hardware parameter configuration space */
/* Query capture */
if( deviceHwInfo->hasCapture &&
OpenPcm( &pcm, deviceHwInfo->alsaName, SND_PCM_STREAM_CAPTURE, blocking, 0 ) >= 0 )
{
if( GropeDevice( pcm, deviceHwInfo->isPlug, StreamDirection_In, blocking, devInfo ) != paNoError )
{
/* Error */
PA_DEBUG(( "%s: Failed groping %s for capture\n", __FUNCTION__, deviceHwInfo->alsaName ));
goto end;
}
}
/* Query playback */
if( deviceHwInfo->hasPlayback &&
OpenPcm( &pcm, deviceHwInfo->alsaName, SND_PCM_STREAM_PLAYBACK, blocking, 0 ) >= 0 )
{
if( GropeDevice( pcm, deviceHwInfo->isPlug, StreamDirection_Out, blocking, devInfo ) != paNoError )
{
/* Error */
PA_DEBUG(( "%s: Failed groping %s for playback\n", __FUNCTION__, deviceHwInfo->alsaName ));
goto end;
}
}
baseDeviceInfo->structVersion = 2;
baseDeviceInfo->hostApi = alsaApi->hostApiIndex;
baseDeviceInfo->name = deviceHwInfo->name;
devInfo->alsaName = deviceHwInfo->alsaName;
devInfo->isPlug = deviceHwInfo->isPlug;
/* A: Storing pointer to PaAlsaDeviceInfo object as pointer to PaDeviceInfo object.
* Should now be safe to add device info, unless the device supports neither capture nor playback
*/
if( baseDeviceInfo->maxInputChannels > 0 || baseDeviceInfo->maxOutputChannels > 0 )
{
/* Make device default if there isn't already one or it is the ALSA "default" device */
if( ( baseApi->info.defaultInputDevice == paNoDevice ||
!strcmp( deviceHwInfo->alsaName, "default" ) ) && baseDeviceInfo->maxInputChannels > 0 )
{
baseApi->info.defaultInputDevice = *devIdx;
PA_DEBUG(( "Default input device: %s\n", deviceHwInfo->name ));
}
if( ( baseApi->info.defaultOutputDevice == paNoDevice ||
!strcmp( deviceHwInfo->alsaName, "default" ) ) && baseDeviceInfo->maxOutputChannels > 0 )
{
baseApi->info.defaultOutputDevice = *devIdx;
PA_DEBUG(( "Default output device: %s\n", deviceHwInfo->name ));
}
PA_DEBUG(( "%s: Adding device %s: %d\n", __FUNCTION__, deviceHwInfo->name, *devIdx ));
baseApi->deviceInfos[*devIdx] = (PaDeviceInfo *) devInfo;
(*devIdx) += 1;
}
else
{
PA_DEBUG(( "%s: Skipped device: %s, all channels == 0\n", __FUNCTION__, deviceHwInfo->name ));
}
end:
return result;
}
/* Build PaDeviceInfo list, ignore devices for which we cannot determine capabilities (possibly busy, sigh) */
static PaError BuildDeviceList( PaAlsaHostApiRepresentation *alsaApi )
{
PaUtilHostApiRepresentation *baseApi = &alsaApi->baseHostApiRep;
PaAlsaDeviceInfo *deviceInfoArray;
int cardIdx = -1, devIdx = 0;
snd_ctl_card_info_t *cardInfo;
PaError result = paNoError;
size_t numDeviceNames = 0, maxDeviceNames = 1, i;
HwDevInfo *hwDevInfos = NULL;
snd_config_t *topNode = NULL;
snd_pcm_info_t *pcmInfo;
int res;
int blocking = SND_PCM_NONBLOCK;
int usePlughw = 0;
char *hwPrefix = "";
char alsaCardName[50];
#ifdef PA_ENABLE_DEBUG_OUTPUT
PaTime startTime = PaUtil_GetTime();
#endif
if( getenv( "PA_ALSA_INITIALIZE_BLOCK" ) && atoi( getenv( "PA_ALSA_INITIALIZE_BLOCK" ) ) )
blocking = 0;
/* If PA_ALSA_PLUGHW is 1 (non-zero), use the plughw: pcm throughout instead of hw: */
if( getenv( "PA_ALSA_PLUGHW" ) && atoi( getenv( "PA_ALSA_PLUGHW" ) ) )
{
usePlughw = 1;
hwPrefix = "plug";
PA_DEBUG(( "%s: Using Plughw\n", __FUNCTION__ ));
}
/* These two will be set to the first working input and output device, respectively */
baseApi->info.defaultInputDevice = paNoDevice;
baseApi->info.defaultOutputDevice = paNoDevice;
/* Gather info about hw devices
* alsa_snd_card_next() modifies the integer passed to it to be:
* the index of the first card if the parameter is -1
* the index of the next card if the parameter is the index of a card
* -1 if there are no more cards
*
* The function itself returns 0 if it succeeded. */
cardIdx = -1;
alsa_snd_ctl_card_info_alloca( &cardInfo );
alsa_snd_pcm_info_alloca( &pcmInfo );
while( alsa_snd_card_next( &cardIdx ) == 0 && cardIdx >= 0 )
{
char *cardName;
int devIdx = -1;
snd_ctl_t *ctl;
char buf[50];
snprintf( alsaCardName, sizeof (alsaCardName), "hw:%d", cardIdx );
/* Acquire name of card */
if( alsa_snd_ctl_open( &ctl, alsaCardName, 0 ) < 0 )
{
/* Unable to open card :( */
PA_DEBUG(( "%s: Unable to open device %s\n", __FUNCTION__, alsaCardName ));
continue;
}
alsa_snd_ctl_card_info( ctl, cardInfo );
PA_ENSURE( PaAlsa_StrDup( alsaApi, &cardName, alsa_snd_ctl_card_info_get_name( cardInfo )) );
while( alsa_snd_ctl_pcm_next_device( ctl, &devIdx ) == 0 && devIdx >= 0 )
{
char *alsaDeviceName, *deviceName, *infoName;
size_t len;
int hasPlayback = 0, hasCapture = 0;
snprintf( buf, sizeof (buf), "%s%s,%d", hwPrefix, alsaCardName, devIdx );
/* Obtain info about this particular device */
alsa_snd_pcm_info_set_device( pcmInfo, devIdx );
alsa_snd_pcm_info_set_subdevice( pcmInfo, 0 );
alsa_snd_pcm_info_set_stream( pcmInfo, SND_PCM_STREAM_CAPTURE );
if( alsa_snd_ctl_pcm_info( ctl, pcmInfo ) >= 0 )
{
hasCapture = 1;
}
alsa_snd_pcm_info_set_stream( pcmInfo, SND_PCM_STREAM_PLAYBACK );
if( alsa_snd_ctl_pcm_info( ctl, pcmInfo ) >= 0 )
{
hasPlayback = 1;
}
if( !hasPlayback && !hasCapture )
{
/* Error */
continue;
}
infoName = SkipCardDetailsInName( (char *)alsa_snd_pcm_info_get_name( pcmInfo ), cardName );
/* The length of the string written by snprintf plus terminating 0 */
len = snprintf( NULL, 0, "%s: %s (%s)", cardName, infoName, buf ) + 1;
PA_UNLESS( deviceName = (char *)PaUtil_GroupAllocateMemory( alsaApi->allocations, len ),
paInsufficientMemory );
snprintf( deviceName, len, "%s: %s (%s)", cardName, infoName, buf );
PA_DEBUG(( "%s: Found device [%d]: %s\n", __FUNCTION__, numDeviceNames, deviceName ));
++numDeviceNames;
if( !hwDevInfos || numDeviceNames > maxDeviceNames )
{
maxDeviceNames *= 2;
PA_UNLESS( hwDevInfos = (HwDevInfo *) realloc( hwDevInfos, maxDeviceNames * sizeof (HwDevInfo) ),
paInsufficientMemory );
}
PA_ENSURE( PaAlsa_StrDup( alsaApi, &alsaDeviceName, buf ) );
hwDevInfos[ numDeviceNames - 1 ].alsaName = alsaDeviceName;
hwDevInfos[ numDeviceNames - 1 ].name = deviceName;
hwDevInfos[ numDeviceNames - 1 ].isPlug = usePlughw;
hwDevInfos[ numDeviceNames - 1 ].hasPlayback = hasPlayback;
hwDevInfos[ numDeviceNames - 1 ].hasCapture = hasCapture;
}
alsa_snd_ctl_close( ctl );
}
/* Iterate over plugin devices */
if( NULL == (*alsa_snd_config) )
{
/* alsa_snd_config_update is called implicitly by some functions, if this hasn't happened snd_config will be NULL (bleh) */
ENSURE_( alsa_snd_config_update(), paUnanticipatedHostError );
PA_DEBUG(( "Updating snd_config\n" ));
}
assert( *alsa_snd_config );
if( ( res = alsa_snd_config_search( *alsa_snd_config, "pcm", &topNode ) ) >= 0 )
{
snd_config_iterator_t i, next;
alsa_snd_config_for_each( i, next, topNode )
{
const char *tpStr = "unknown", *idStr = NULL;
int err = 0;
char *alsaDeviceName, *deviceName;
const HwDevInfo *predefined = NULL;
snd_config_t *n = alsa_snd_config_iterator_entry( i ), * tp = NULL;;
if( (err = alsa_snd_config_search( n, "type", &tp )) < 0 )
{
if( -ENOENT != err )
{
ENSURE_(err, paUnanticipatedHostError);
}
}
else
{
ENSURE_( alsa_snd_config_get_string( tp, &tpStr ), paUnanticipatedHostError );
}
ENSURE_( alsa_snd_config_get_id( n, &idStr ), paUnanticipatedHostError );
if( IgnorePlugin( idStr ) )
{
PA_DEBUG(( "%s: Ignoring ALSA plugin device [%s] of type [%s]\n", __FUNCTION__, idStr, tpStr ));
continue;
}
PA_DEBUG(( "%s: Found plugin [%s] of type [%s]\n", __FUNCTION__, idStr, tpStr ));
PA_UNLESS( alsaDeviceName = (char*)PaUtil_GroupAllocateMemory( alsaApi->allocations,
strlen(idStr) + 6 ), paInsufficientMemory );
strcpy( alsaDeviceName, idStr );
PA_UNLESS( deviceName = (char*)PaUtil_GroupAllocateMemory( alsaApi->allocations,
strlen(idStr) + 1 ), paInsufficientMemory );
strcpy( deviceName, idStr );
++numDeviceNames;
if( !hwDevInfos || numDeviceNames > maxDeviceNames )
{
maxDeviceNames *= 2;
PA_UNLESS( hwDevInfos = (HwDevInfo *) realloc( hwDevInfos, maxDeviceNames * sizeof (HwDevInfo) ),
paInsufficientMemory );
}
predefined = FindDeviceName( alsaDeviceName );
hwDevInfos[numDeviceNames - 1].alsaName = alsaDeviceName;
hwDevInfos[numDeviceNames - 1].name = deviceName;
hwDevInfos[numDeviceNames - 1].isPlug = 1;
if( predefined )
{
hwDevInfos[numDeviceNames - 1].hasPlayback = predefined->hasPlayback;
hwDevInfos[numDeviceNames - 1].hasCapture = predefined->hasCapture;
}
else
{
hwDevInfos[numDeviceNames - 1].hasPlayback = 1;
hwDevInfos[numDeviceNames - 1].hasCapture = 1;
}
}
}
else
PA_DEBUG(( "%s: Iterating over ALSA plugins failed: %s\n", __FUNCTION__, alsa_snd_strerror( res ) ));
/* allocate deviceInfo memory based on the number of devices */
PA_UNLESS( baseApi->deviceInfos = (PaDeviceInfo**)PaUtil_GroupAllocateMemory(
alsaApi->allocations, sizeof(PaDeviceInfo*) * (numDeviceNames) ), paInsufficientMemory );
/* allocate all device info structs in a contiguous block */
PA_UNLESS( deviceInfoArray = (PaAlsaDeviceInfo*)PaUtil_GroupAllocateMemory(
alsaApi->allocations, sizeof(PaAlsaDeviceInfo) * numDeviceNames ), paInsufficientMemory );
/* Loop over list of cards, filling in info. If a device is deemed unavailable (can't get name),
* it's ignored.
*
* Note that we do this in two stages. This is a workaround owing to the fact that the 'dmix'
* plugin may cause the underlying hardware device to be busy for a short while even after it
* (dmix) is closed. The 'default' plugin may also point to the dmix plugin, so the same goes
* for this.
*/
PA_DEBUG(( "%s: Filling device info for %d devices\n", __FUNCTION__, numDeviceNames ));
for( i = 0, devIdx = 0; i < numDeviceNames; ++i )
{
PaAlsaDeviceInfo* devInfo = &deviceInfoArray[i];
HwDevInfo* hwInfo = &hwDevInfos[i];
if( !strcmp( hwInfo->name, "dmix" ) || !strcmp( hwInfo->name, "default" ) )
{
continue;
}
PA_ENSURE( FillInDevInfo( alsaApi, hwInfo, blocking, devInfo, &devIdx ) );
}
assert( devIdx <= numDeviceNames );
/* Now inspect 'dmix' and 'default' plugins */
for( i = 0; i < numDeviceNames; ++i )
{
PaAlsaDeviceInfo* devInfo = &deviceInfoArray[i];
HwDevInfo* hwInfo = &hwDevInfos[i];
if( strcmp( hwInfo->name, "dmix" ) && strcmp( hwInfo->name, "default" ) )
{
continue;
}
PA_ENSURE( FillInDevInfo( alsaApi, hwInfo, blocking, devInfo, &devIdx ) );
}
free( hwDevInfos );
baseApi->info.deviceCount = devIdx; /* Number of successfully queried devices */
#ifdef PA_ENABLE_DEBUG_OUTPUT
PA_DEBUG(( "%s: Building device list took %f seconds\n", __FUNCTION__, PaUtil_GetTime() - startTime ));
#endif
end:
return result;
error:
/* No particular action */
goto end;
}
/* Check against known device capabilities */
static PaError ValidateParameters( const PaStreamParameters *parameters, PaUtilHostApiRepresentation *hostApi, StreamDirection mode )
{
PaError result = paNoError;
int maxChans;
const PaAlsaDeviceInfo *deviceInfo = NULL;
assert( parameters );
if( parameters->device != paUseHostApiSpecificDeviceSpecification )
{
assert( parameters->device < hostApi->info.deviceCount );
PA_UNLESS( parameters->hostApiSpecificStreamInfo == NULL, paBadIODeviceCombination );
deviceInfo = GetDeviceInfo( hostApi, parameters->device );
}
else
{
const PaAlsaStreamInfo *streamInfo = parameters->hostApiSpecificStreamInfo;
PA_UNLESS( parameters->device == paUseHostApiSpecificDeviceSpecification, paInvalidDevice );
PA_UNLESS( streamInfo->size == sizeof (PaAlsaStreamInfo) && streamInfo->version == 1,
paIncompatibleHostApiSpecificStreamInfo );
PA_UNLESS( streamInfo->deviceString != NULL, paInvalidDevice );
/* Skip further checking */
return paNoError;
}
assert( deviceInfo );
assert( parameters->hostApiSpecificStreamInfo == NULL );
maxChans = ( StreamDirection_In == mode ? deviceInfo->baseDeviceInfo.maxInputChannels :
deviceInfo->baseDeviceInfo.maxOutputChannels );
PA_UNLESS( parameters->channelCount <= maxChans, paInvalidChannelCount );
error:
return result;
}
/* Given an open stream, what sample formats are available? */
static PaSampleFormat GetAvailableFormats( snd_pcm_t *pcm )
{
PaSampleFormat available = 0;
snd_pcm_hw_params_t *hwParams;
alsa_snd_pcm_hw_params_alloca( &hwParams );
alsa_snd_pcm_hw_params_any( pcm, hwParams );
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT ) >= 0)
available |= paFloat32;
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S32 ) >= 0)
available |= paInt32;
#ifdef PA_LITTLE_ENDIAN
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24_3LE ) >= 0)
available |= paInt24;
#elif defined PA_BIG_ENDIAN
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24_3BE ) >= 0)
available |= paInt24;
#endif
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S16 ) >= 0)
available |= paInt16;
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U8 ) >= 0)
available |= paUInt8;
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S8 ) >= 0)
available |= paInt8;
return available;
}
/* Output to console all formats supported by device */
static void LogAllAvailableFormats( snd_pcm_t *pcm )
{
PaSampleFormat available = 0;
snd_pcm_hw_params_t *hwParams;
alsa_snd_pcm_hw_params_alloca( &hwParams );
alsa_snd_pcm_hw_params_any( pcm, hwParams );
PA_DEBUG(( " --- Supported Formats ---\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S8 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S8\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U8 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U8\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S16_LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S16_LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S16_BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S16_BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U16_LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U16_LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U16_BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U16_BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24_LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S24_LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24_BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S24_BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U24_LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U24_LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U24_BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U24_BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT_LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_FLOAT_LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT_BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_FLOAT_BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT64_LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_FLOAT64_LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT64_BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_FLOAT64_BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_IEC958_SUBFRAME_LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_IEC958_SUBFRAME_LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_IEC958_SUBFRAME_BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_IEC958_SUBFRAME_BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_MU_LAW ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_MU_LAW\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_A_LAW ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_A_LAW\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_IMA_ADPCM ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_IMA_ADPCM\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_MPEG ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_MPEG\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_GSM ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_GSM\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_SPECIAL ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_SPECIAL\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24_3LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S24_3LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24_3BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S24_3BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U24_3LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U24_3LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U24_3BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U24_3BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S20_3LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S20_3LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S20_3BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S20_3BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U20_3LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U20_3LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U20_3BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U20_3BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S18_3LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S18_3LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S18_3BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S18_3BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U18_3LE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U18_3LE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U18_3BE ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U18_3BE\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S16 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S16\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U16 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U16\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S24\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U24 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U24\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S32 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_S32\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U32 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_U32\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_FLOAT\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT64 ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_FLOAT64\n" ));
if( alsa_snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_IEC958_SUBFRAME ) >= 0)
PA_DEBUG(( "SND_PCM_FORMAT_IEC958_SUBFRAME\n" ));
PA_DEBUG(( " -------------------------\n" ));
}
static snd_pcm_format_t Pa2AlsaFormat( PaSampleFormat paFormat )
{
switch( paFormat )
{
case paFloat32:
return SND_PCM_FORMAT_FLOAT;
case paInt16:
return SND_PCM_FORMAT_S16;
case paInt24:
#ifdef PA_LITTLE_ENDIAN
return SND_PCM_FORMAT_S24_3LE;
#elif defined PA_BIG_ENDIAN
return SND_PCM_FORMAT_S24_3BE;
#endif
case paInt32:
return SND_PCM_FORMAT_S32;
case paInt8:
return SND_PCM_FORMAT_S8;
case paUInt8:
return SND_PCM_FORMAT_U8;
default:
return SND_PCM_FORMAT_UNKNOWN;
}
}
/** Open an ALSA pcm handle.
*
* The device to be open can be specified by name in a custom PaAlsaStreamInfo struct, or it will be by
* the Portaudio device number supplied in the stream parameters.
*/
static PaError AlsaOpen( const PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *params, StreamDirection
streamDir, snd_pcm_t **pcm )
{
PaError result = paNoError;
int ret;
const char* deviceName = "";
const PaAlsaDeviceInfo *deviceInfo = NULL;
PaAlsaStreamInfo *streamInfo = (PaAlsaStreamInfo *)params->hostApiSpecificStreamInfo;
if( !streamInfo )
{
deviceInfo = GetDeviceInfo( hostApi, params->device );
deviceName = deviceInfo->alsaName;
}
else
deviceName = streamInfo->deviceString;
PA_DEBUG(( "%s: Opening device %s\n", __FUNCTION__, deviceName ));
if( (ret = OpenPcm( pcm, deviceName, streamDir == StreamDirection_In ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK,
SND_PCM_NONBLOCK, 1 )) < 0 )
{
/* Not to be closed */
*pcm = NULL;
ENSURE_( ret, -EBUSY == ret ? paDeviceUnavailable : paBadIODeviceCombination );
}
ENSURE_( alsa_snd_pcm_nonblock( *pcm, 0 ), paUnanticipatedHostError );
end:
return result;
error:
goto end;
}
static PaError TestParameters( const PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *parameters,
double sampleRate, StreamDirection streamDir )
{
PaError result = paNoError;
snd_pcm_t *pcm = NULL;
PaSampleFormat availableFormats;
/* We are able to adapt to a number of channels less than what the device supports */
unsigned int numHostChannels;
PaSampleFormat hostFormat;
snd_pcm_hw_params_t *hwParams;
alsa_snd_pcm_hw_params_alloca( &hwParams );
if( !parameters->hostApiSpecificStreamInfo )
{
const PaAlsaDeviceInfo *devInfo = GetDeviceInfo( hostApi, parameters->device );
numHostChannels = PA_MAX( parameters->channelCount, StreamDirection_In == streamDir ?
devInfo->minInputChannels : devInfo->minOutputChannels );
}
else
numHostChannels = parameters->channelCount;
PA_ENSURE( AlsaOpen( hostApi, parameters, streamDir, &pcm ) );
alsa_snd_pcm_hw_params_any( pcm, hwParams );
if( SetApproximateSampleRate( pcm, hwParams, sampleRate ) < 0 )
{
result = paInvalidSampleRate;
goto error;
}
if( alsa_snd_pcm_hw_params_set_channels( pcm, hwParams, numHostChannels ) < 0 )
{
result = paInvalidChannelCount;
goto error;
}
/* See if we can find a best possible match */
availableFormats = GetAvailableFormats( pcm );
PA_ENSURE( hostFormat = PaUtil_SelectClosestAvailableFormat( availableFormats, parameters->sampleFormat ) );
/* Some specific hardware (reported: Audio8 DJ) can fail with assertion during this step. */
ENSURE_( alsa_snd_pcm_hw_params_set_format( pcm, hwParams, Pa2AlsaFormat( hostFormat ) ), paUnanticipatedHostError );
{
/* It happens that this call fails because the device is busy */
int ret = 0;
if( ( ret = alsa_snd_pcm_hw_params( pcm, hwParams ) ) < 0 )
{
if( -EINVAL == ret )
{
/* Don't know what to return here */
result = paBadIODeviceCombination;
goto error;
}
else if( -EBUSY == ret )
{
result = paDeviceUnavailable;
PA_DEBUG(( "%s: Device is busy\n", __FUNCTION__ ));
}
else
{
result = paUnanticipatedHostError;
}
ENSURE_( ret, result );
}
}
end:
if( pcm )
{
alsa_snd_pcm_close( pcm );
}
return result;
error:
goto end;
}
static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate )
{
int inputChannelCount = 0, outputChannelCount = 0;
PaSampleFormat inputSampleFormat, outputSampleFormat;
PaError result = paFormatIsSupported;
if( inputParameters )
{
PA_ENSURE( ValidateParameters( inputParameters, hostApi, StreamDirection_In ) );
inputChannelCount = inputParameters->channelCount;
inputSampleFormat = inputParameters->sampleFormat;
}
if( outputParameters )
{
PA_ENSURE( ValidateParameters( outputParameters, hostApi, StreamDirection_Out ) );
outputChannelCount = outputParameters->channelCount;
outputSampleFormat = outputParameters->sampleFormat;
}
if( inputChannelCount )
{
if( ( result = TestParameters( hostApi, inputParameters, sampleRate, StreamDirection_In ) )
!= paNoError )
goto error;
}
if ( outputChannelCount )
{
if( ( result = TestParameters( hostApi, outputParameters, sampleRate, StreamDirection_Out ) )
!= paNoError )
goto error;
}
return paFormatIsSupported;
error:
return result;
}
static PaError PaAlsaStreamComponent_Initialize( PaAlsaStreamComponent *self, PaAlsaHostApiRepresentation *alsaApi,
const PaStreamParameters *params, StreamDirection streamDir, int callbackMode )
{
PaError result = paNoError;
PaSampleFormat userSampleFormat = params->sampleFormat, hostSampleFormat = paNoError;
assert( params->channelCount > 0 );
/* Make sure things have an initial value */
memset( self, 0, sizeof (PaAlsaStreamComponent) );
if( NULL == params->hostApiSpecificStreamInfo )
{
const PaAlsaDeviceInfo *devInfo = GetDeviceInfo( &alsaApi->baseHostApiRep, params->device );
self->numHostChannels = PA_MAX( params->channelCount, StreamDirection_In == streamDir ? devInfo->minInputChannels
: devInfo->minOutputChannels );
self->deviceIsPlug = devInfo->isPlug;
PA_DEBUG(( "%s: Host Chans %c %i\n", __FUNCTION__, streamDir == StreamDirection_In ? 'C' : 'P', self->numHostChannels ));
}
else
{
/* We're blissfully unaware of the minimum channelCount */
self->numHostChannels = params->channelCount;
/* Check if device name does not start with hw: to determine if it is a 'plug' device */
if( strncmp( "hw:", ((PaAlsaStreamInfo *)params->hostApiSpecificStreamInfo)->deviceString, 3 ) != 0 )
self->deviceIsPlug = 1; /* An Alsa plug device, not a direct hw device */
}
if( self->deviceIsPlug && alsaApi->alsaLibVersion < ALSA_VERSION_INT( 1, 0, 16 ) )
self->useReventFix = 1; /* Prior to Alsa1.0.16, plug devices may stutter without this fix */
self->device = params->device;
PA_ENSURE( AlsaOpen( &alsaApi->baseHostApiRep, params, streamDir, &self->pcm ) );
self->nfds = alsa_snd_pcm_poll_descriptors_count( self->pcm );
PA_ENSURE( hostSampleFormat = PaUtil_SelectClosestAvailableFormat( GetAvailableFormats( self->pcm ), userSampleFormat ) );
self->hostSampleFormat = hostSampleFormat;
self->nativeFormat = Pa2AlsaFormat( hostSampleFormat );
self->hostInterleaved = self->userInterleaved = !( userSampleFormat & paNonInterleaved );
self->numUserChannels = params->channelCount;
self->streamDir = streamDir;
self->canMmap = 0;
self->nonMmapBuffer = NULL;
self->nonMmapBufferSize = 0;
if( !callbackMode && !self->userInterleaved )
{
/* Pre-allocate non-interleaved user provided buffers */
PA_UNLESS( self->userBuffers = PaUtil_AllocateMemory( sizeof (void *) * self->numUserChannels ),
paInsufficientMemory );
}
error:
/* Log all available formats. */
if ( hostSampleFormat == paSampleFormatNotSupported )
{
LogAllAvailableFormats( self->pcm );
PA_DEBUG(( "%s: Please provide the log output to PortAudio developers, your hardware does not have any sample format implemented yet.\n", __FUNCTION__ ));
}
return result;
}
static void PaAlsaStreamComponent_Terminate( PaAlsaStreamComponent *self )
{
alsa_snd_pcm_close( self->pcm );
PaUtil_FreeMemory( self->userBuffers ); /* (Ptr can be NULL; PaUtil_FreeMemory includes a NULL check) */
PaUtil_FreeMemory( self->nonMmapBuffer );
}
/*
static int nearbyint_(float value) {
if( value - (int)value > .5 )
return (int)ceil( value );
return (int)floor( value );
}
*/
/** Initiate configuration, preparing for determining a period size suitable for both capture and playback components.
*
*/
static PaError PaAlsaStreamComponent_InitialConfigure( PaAlsaStreamComponent *self, const PaStreamParameters *params,
int primeBuffers, snd_pcm_hw_params_t *hwParams, double *sampleRate )
{
/* Configuration consists of setting all of ALSA's parameters.
* These parameters come in two flavors: hardware parameters
* and software parameters. Hardware parameters will affect
* the way the device is initialized, software parameters
* affect the way ALSA interacts with me, the user-level client.
*/
PaError result = paNoError;
snd_pcm_access_t accessMode, alternateAccessMode;
int dir = 0;
snd_pcm_t *pcm = self->pcm;
double sr = *sampleRate;
unsigned int minPeriods = 2;
/* self->framesPerPeriod = framesPerHostBuffer; */
/* ... fill up the configuration space with all possible
* combinations of parameters this device will accept */
ENSURE_( alsa_snd_pcm_hw_params_any( pcm, hwParams ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_hw_params_set_periods_integer( pcm, hwParams ), paUnanticipatedHostError );
/* I think there should be at least 2 periods (even though ALSA doesn't appear to enforce this) */
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_set_periods_min( pcm, hwParams, &minPeriods, &dir ), paUnanticipatedHostError );
if( self->userInterleaved )
{
accessMode = SND_PCM_ACCESS_MMAP_INTERLEAVED;
alternateAccessMode = SND_PCM_ACCESS_MMAP_NONINTERLEAVED;
/* test if MMAP supported */
self->canMmap = alsa_snd_pcm_hw_params_test_access( pcm, hwParams, accessMode ) >= 0 ||
alsa_snd_pcm_hw_params_test_access( pcm, hwParams, alternateAccessMode ) >= 0;
PA_DEBUG(( "%s: device MMAP SND_PCM_ACCESS_MMAP_INTERLEAVED: %s\n", __FUNCTION__, ( alsa_snd_pcm_hw_params_test_access( pcm, hwParams, accessMode ) >= 0 ? "YES" : "NO" ) ));
PA_DEBUG(( "%s: device MMAP SND_PCM_ACCESS_MMAP_NONINTERLEAVED: %s\n", __FUNCTION__, ( alsa_snd_pcm_hw_params_test_access( pcm, hwParams, alternateAccessMode ) >= 0 ? "YES" : "NO" ) ));
if( !self->canMmap )
{
accessMode = SND_PCM_ACCESS_RW_INTERLEAVED;
alternateAccessMode = SND_PCM_ACCESS_RW_NONINTERLEAVED;
}
}
else
{
accessMode = SND_PCM_ACCESS_MMAP_NONINTERLEAVED;
alternateAccessMode = SND_PCM_ACCESS_MMAP_INTERLEAVED;
/* test if MMAP supported */
self->canMmap = alsa_snd_pcm_hw_params_test_access( pcm, hwParams, accessMode ) >= 0 ||
alsa_snd_pcm_hw_params_test_access( pcm, hwParams, alternateAccessMode ) >= 0;
PA_DEBUG((" %s: device MMAP SND_PCM_ACCESS_MMAP_NONINTERLEAVED: %s\n", __FUNCTION__, ( alsa_snd_pcm_hw_params_test_access( pcm, hwParams, accessMode ) >= 0 ? "YES" : "NO" ) ));
PA_DEBUG(( "%s: device MMAP SND_PCM_ACCESS_MMAP_INTERLEAVED: %s\n", __FUNCTION__, ( alsa_snd_pcm_hw_params_test_access( pcm, hwParams, alternateAccessMode ) >= 0 ? "YES" : "NO" ) ));
if( !self->canMmap )
{
accessMode = SND_PCM_ACCESS_RW_NONINTERLEAVED;
alternateAccessMode = SND_PCM_ACCESS_RW_INTERLEAVED;
}
}
PA_DEBUG(( "%s: device can MMAP: %s\n", __FUNCTION__, ( self->canMmap ? "YES" : "NO" ) ));
/* If requested access mode fails, try alternate mode */
if( alsa_snd_pcm_hw_params_set_access( pcm, hwParams, accessMode ) < 0 )
{
int err = 0;
if( ( err = alsa_snd_pcm_hw_params_set_access( pcm, hwParams, alternateAccessMode )) < 0 )
{
result = paUnanticipatedHostError;
PaUtil_SetLastHostErrorInfo( paALSA, err, alsa_snd_strerror( err ) );
goto error;
}
/* Flip mode */
self->hostInterleaved = !self->userInterleaved;
}
/* Some specific hardware (reported: Audio8 DJ) can fail with assertion during this step. */
ENSURE_( alsa_snd_pcm_hw_params_set_format( pcm, hwParams, self->nativeFormat ), paUnanticipatedHostError );
if( ( result = SetApproximateSampleRate( pcm, hwParams, sr )) != paUnanticipatedHostError )
{
ENSURE_( GetExactSampleRate( hwParams, &sr ), paUnanticipatedHostError );
if( result == paInvalidSampleRate ) /* From the SetApproximateSampleRate() call above */
{ /* The sample rate was returned as 'out of tolerance' of the one requested */
PA_DEBUG(( "%s: Wanted %.3f, closest sample rate was %.3f\n", __FUNCTION__, sampleRate, sr ));
PA_ENSURE( paInvalidSampleRate );
}
}
else
{
PA_ENSURE( paUnanticipatedHostError );
}
ENSURE_( alsa_snd_pcm_hw_params_set_channels( pcm, hwParams, self->numHostChannels ), paInvalidChannelCount );
*sampleRate = sr;
end:
return result;
error:
/* No particular action */
goto end;
}
/** Finish the configuration of the component's ALSA device.
*
* As part of this method, the component's alsaBufferSize attribute will be set.
* @param latency: The latency for this component.
*/
static PaError PaAlsaStreamComponent_FinishConfigure( PaAlsaStreamComponent *self, snd_pcm_hw_params_t* hwParams,
const PaStreamParameters *params, int primeBuffers, double sampleRate, PaTime* latency )
{
PaError result = paNoError;
snd_pcm_sw_params_t* swParams;
snd_pcm_uframes_t bufSz = 0;
*latency = -1.;
alsa_snd_pcm_sw_params_alloca( &swParams );
bufSz = params->suggestedLatency * sampleRate + self->framesPerPeriod;
ENSURE_( alsa_snd_pcm_hw_params_set_buffer_size_near( self->pcm, hwParams, &bufSz ), paUnanticipatedHostError );
/* Set the parameters! */
{
int r = alsa_snd_pcm_hw_params( self->pcm, hwParams );
#ifdef PA_ENABLE_DEBUG_OUTPUT
if( r < 0 )
{
snd_output_t *output = NULL;
alsa_snd_output_stdio_attach( &output, stderr, 0 );
alsa_snd_pcm_hw_params_dump( hwParams, output );
}
#endif
ENSURE_( r, paUnanticipatedHostError );
}
if( alsa_snd_pcm_hw_params_get_buffer_size != NULL )
{
ENSURE_( alsa_snd_pcm_hw_params_get_buffer_size( hwParams, &self->alsaBufferSize ), paUnanticipatedHostError );
}
else
{
self->alsaBufferSize = bufSz;
}
/* Latency in seconds */
*latency = (self->alsaBufferSize - self->framesPerPeriod) / sampleRate;
/* Now software parameters... */
ENSURE_( alsa_snd_pcm_sw_params_current( self->pcm, swParams ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_sw_params_set_start_threshold( self->pcm, swParams, self->framesPerPeriod ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_sw_params_set_stop_threshold( self->pcm, swParams, self->alsaBufferSize ), paUnanticipatedHostError );
/* Silence buffer in the case of underrun */
if( !primeBuffers ) /* XXX: Make sense? */
{
snd_pcm_uframes_t boundary;
ENSURE_( alsa_snd_pcm_sw_params_get_boundary( swParams, &boundary ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_sw_params_set_silence_threshold( self->pcm, swParams, 0 ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_sw_params_set_silence_size( self->pcm, swParams, boundary ), paUnanticipatedHostError );
}
ENSURE_( alsa_snd_pcm_sw_params_set_avail_min( self->pcm, swParams, self->framesPerPeriod ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_sw_params_set_xfer_align( self->pcm, swParams, 1 ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_sw_params_set_tstamp_mode( self->pcm, swParams, SND_PCM_TSTAMP_ENABLE ), paUnanticipatedHostError );
/* Set the parameters! */
ENSURE_( alsa_snd_pcm_sw_params( self->pcm, swParams ), paUnanticipatedHostError );
error:
return result;
}
static PaError PaAlsaStream_Initialize( PaAlsaStream *self, PaAlsaHostApiRepresentation *alsaApi, const PaStreamParameters *inParams,
const PaStreamParameters *outParams, double sampleRate, unsigned long framesPerUserBuffer, PaStreamCallback callback,
PaStreamFlags streamFlags, void *userData )
{
PaError result = paNoError;
assert( self );
memset( self, 0, sizeof( PaAlsaStream ) );
if( NULL != callback )
{
PaUtil_InitializeStreamRepresentation( &self->streamRepresentation,
&alsaApi->callbackStreamInterface,
callback, userData );
self->callbackMode = 1;
}
else
{
PaUtil_InitializeStreamRepresentation( &self->streamRepresentation,
&alsaApi->blockingStreamInterface,
NULL, userData );
}
self->framesPerUserBuffer = framesPerUserBuffer;
self->neverDropInput = streamFlags & paNeverDropInput;
/* XXX: Ignore paPrimeOutputBuffersUsingStreamCallback until buffer priming is fully supported in pa_process.c */
/*
if( outParams & streamFlags & paPrimeOutputBuffersUsingStreamCallback )
self->primeBuffers = 1;
*/
memset( &self->capture, 0, sizeof (PaAlsaStreamComponent) );
memset( &self->playback, 0, sizeof (PaAlsaStreamComponent) );
if( inParams )
{
PA_ENSURE( PaAlsaStreamComponent_Initialize( &self->capture, alsaApi, inParams, StreamDirection_In, NULL != callback ) );
}
if( outParams )
{
PA_ENSURE( PaAlsaStreamComponent_Initialize( &self->playback, alsaApi, outParams, StreamDirection_Out, NULL != callback ) );
}
assert( self->capture.nfds || self->playback.nfds );
PA_UNLESS( self->pfds = (struct pollfd*)PaUtil_AllocateMemory( ( self->capture.nfds +
self->playback.nfds ) * sizeof( struct pollfd ) ), paInsufficientMemory );
PaUtil_InitializeCpuLoadMeasurer( &self->cpuLoadMeasurer, sampleRate );
ASSERT_CALL_( PaUnixMutex_Initialize( &self->stateMtx ), paNoError );
error:
return result;
}
/** Free resources associated with stream, and eventually stream itself.
*
* Frees allocated memory, and terminates individual StreamComponents.
*/
static void PaAlsaStream_Terminate( PaAlsaStream *self )
{
assert( self );
if( self->capture.pcm )
{
PaAlsaStreamComponent_Terminate( &self->capture );
}
if( self->playback.pcm )
{
PaAlsaStreamComponent_Terminate( &self->playback );
}
PaUtil_FreeMemory( self->pfds );
ASSERT_CALL_( PaUnixMutex_Terminate( &self->stateMtx ), paNoError );
PaUtil_FreeMemory( self );
}
/** Calculate polling timeout
*
* @param frames Time to wait
* @return Polling timeout in milliseconds
*/
static int CalculatePollTimeout( const PaAlsaStream *stream, unsigned long frames )
{
assert( stream->streamRepresentation.streamInfo.sampleRate > 0.0 );
/* Period in msecs, rounded up */
return (int)ceil( 1000 * frames / stream->streamRepresentation.streamInfo.sampleRate );
}
/** Align value in backward direction.
*
* @param v: Value to align.
* @param align: Alignment.
*/
static unsigned long PaAlsa_AlignBackward(unsigned long v, unsigned long align)
{
return ( v - ( align ? v % align : 0 ) );
}
/** Align value in forward direction.
*
* @param v: Value to align.
* @param align: Alignment.
*/
static unsigned long PaAlsa_AlignForward(unsigned long v, unsigned long align)
{
unsigned long remainder = ( align ? ( v % align ) : 0);
return ( remainder != 0 ? v + ( align - remainder ) : v );
}
/** Get size of host buffer maintained from the number of user frames, sample rate and suggested latency. Minimum double buffering
* is maintained to allow 100% CPU usage inside user callback.
*
* @param userFramesPerBuffer: User buffer size in number of frames.
* @param suggestedLatency: User provided desired latency.
* @param sampleRate: Sample rate.
*/
static unsigned long PaAlsa_GetFramesPerHostBuffer(unsigned long userFramesPerBuffer, PaTime suggestedLatency, double sampleRate)
{
unsigned long frames = userFramesPerBuffer + PA_MAX( userFramesPerBuffer, (unsigned long)( suggestedLatency * sampleRate ) );
return frames;
}
/** Determine size per host buffer.
*
* During this method call, the component's framesPerPeriod attribute gets computed, and the corresponding period size
* gets configured for the device.
* @param accurate: If the configured period size is non-integer, this will be set to 0.
*/
static PaError PaAlsaStreamComponent_DetermineFramesPerBuffer( PaAlsaStreamComponent* self, const PaStreamParameters* params,
unsigned long framesPerUserBuffer, double sampleRate, snd_pcm_hw_params_t* hwParams, int* accurate )
{
PaError result = paNoError;
unsigned long bufferSize, framesPerHostBuffer;
int dir = 0;
/* Calculate host buffer size */
bufferSize = PaAlsa_GetFramesPerHostBuffer(framesPerUserBuffer, params->suggestedLatency, sampleRate);
/* Log */
PA_DEBUG(( "%s: user-buffer (frames) = %lu\n", __FUNCTION__, framesPerUserBuffer ));
PA_DEBUG(( "%s: user-buffer (sec) = %f\n", __FUNCTION__, (double)(framesPerUserBuffer / sampleRate) ));
PA_DEBUG(( "%s: suggested latency (sec) = %f\n", __FUNCTION__, params->suggestedLatency ));
PA_DEBUG(( "%s: suggested host buffer (frames) = %lu\n", __FUNCTION__, bufferSize ));
PA_DEBUG(( "%s: suggested host buffer (sec) = %f\n", __FUNCTION__, (double)(bufferSize / sampleRate) ));
#ifdef PA_ALSA_USE_OBSOLETE_HOST_BUFFER_CALC
if( framesPerUserBuffer != paFramesPerBufferUnspecified )
{
/* Preferably the host buffer size should be a multiple of the user buffer size */
if( bufferSize > framesPerUserBuffer )
{
snd_pcm_uframes_t remainder = bufferSize % framesPerUserBuffer;
if( remainder > framesPerUserBuffer / 2. )
bufferSize += framesPerUserBuffer - remainder;
else
bufferSize -= remainder;
assert( bufferSize % framesPerUserBuffer == 0 );
}
else if( framesPerUserBuffer % bufferSize != 0 )
{
/* Find a good compromise between user specified latency and buffer size */
if( bufferSize > framesPerUserBuffer * .75 )
{
bufferSize = framesPerUserBuffer;
}
else
{
snd_pcm_uframes_t newSz = framesPerUserBuffer;
while( newSz / 2 >= bufferSize )
{
if( framesPerUserBuffer % (newSz / 2) != 0 )
{
/* No use dividing any further */
break;
}
newSz /= 2;
}
bufferSize = newSz;
}
assert( framesPerUserBuffer % bufferSize == 0 );
}
}
#endif
{
unsigned numPeriods = numPeriods_, maxPeriods = 0, minPeriods = numPeriods_;
/* It may be that the device only supports 2 periods for instance */
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_periods_min( hwParams, &minPeriods, &dir ), paUnanticipatedHostError );
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_periods_max( hwParams, &maxPeriods, &dir ), paUnanticipatedHostError );
assert( maxPeriods > 1 );
/* Clamp to min/max */
numPeriods = PA_MIN(maxPeriods, PA_MAX(minPeriods, numPeriods));
PA_DEBUG(( "%s: periods min = %lu, max = %lu, req = %lu \n", __FUNCTION__, minPeriods, maxPeriods, numPeriods ));
#ifndef PA_ALSA_USE_OBSOLETE_HOST_BUFFER_CALC
/* Calculate period size */
framesPerHostBuffer = (bufferSize / numPeriods);
/* Align & test size */
if( framesPerUserBuffer != paFramesPerBufferUnspecified )
{
/* Align to user buffer size */
framesPerHostBuffer = PaAlsa_AlignForward(framesPerHostBuffer, framesPerUserBuffer);
/* Test (borrowed from older implementation) */
if( framesPerHostBuffer < framesPerUserBuffer )
{
assert( framesPerUserBuffer % framesPerHostBuffer == 0 );
if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer, 0 ) < 0 )
{
if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer * 2, 0 ) == 0 )
framesPerHostBuffer *= 2;
else if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer / 2, 0 ) == 0 )
framesPerHostBuffer /= 2;
}
}
else
{
assert( framesPerHostBuffer % framesPerUserBuffer == 0 );
if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer, 0 ) < 0 )
{
if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer + framesPerUserBuffer, 0 ) == 0 )
framesPerHostBuffer += framesPerUserBuffer;
else if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer - framesPerUserBuffer, 0 ) == 0 )
framesPerHostBuffer -= framesPerUserBuffer;
}
}
}
#endif
#ifdef PA_ALSA_USE_OBSOLETE_HOST_BUFFER_CALC
if( framesPerUserBuffer != paFramesPerBufferUnspecified )
{
/* Try to get a power-of-two of the user buffer size. */
framesPerHostBuffer = framesPerUserBuffer;
if( framesPerHostBuffer < bufferSize )
{
while( bufferSize / framesPerHostBuffer > numPeriods )
{
framesPerHostBuffer *= 2;
}
/* One extra period is preferable to one less (should be more robust) */
if( bufferSize / framesPerHostBuffer < numPeriods )
{
framesPerHostBuffer /= 2;
}
}
else
{
while( bufferSize / framesPerHostBuffer < numPeriods )
{
if( framesPerUserBuffer % ( framesPerHostBuffer / 2 ) != 0 )
{
/* Can't be divided any further */
break;
}
framesPerHostBuffer /= 2;
}
}
if( framesPerHostBuffer < framesPerUserBuffer )
{
assert( framesPerUserBuffer % framesPerHostBuffer == 0 );
if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer, 0 ) < 0 )
{
if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer * 2, 0 ) == 0 )
framesPerHostBuffer *= 2;
else if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer / 2, 0 ) == 0 )
framesPerHostBuffer /= 2;
}
}
else
{
assert( framesPerHostBuffer % framesPerUserBuffer == 0 );
if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer, 0 ) < 0 )
{
if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer + framesPerUserBuffer, 0 ) == 0 )
framesPerHostBuffer += framesPerUserBuffer;
else if( alsa_snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer - framesPerUserBuffer, 0 ) == 0 )
framesPerHostBuffer -= framesPerUserBuffer;
}
}
}
else
{
framesPerHostBuffer = bufferSize / numPeriods;
}
/* non-mmap mode needs a reasonably-sized buffer or it'll stutter */
if( !self->canMmap && framesPerHostBuffer < 2048 )
framesPerHostBuffer = 2048;
#endif
PA_DEBUG(( "%s: suggested host buffer period = %lu \n", __FUNCTION__, framesPerHostBuffer ));
}
{
/* Get min/max period sizes and adjust our chosen */
snd_pcm_uframes_t min = 0, max = 0, minmax_diff;
ENSURE_( alsa_snd_pcm_hw_params_get_period_size_min( hwParams, &min, NULL ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_hw_params_get_period_size_max( hwParams, &max, NULL ), paUnanticipatedHostError );
minmax_diff = max - min;
if( framesPerHostBuffer < min )
{
PA_DEBUG(( "%s: The determined period size (%lu) is less than minimum (%lu)\n", __FUNCTION__, framesPerHostBuffer, min ));
framesPerHostBuffer = (( minmax_diff == 2 ) ? min + 1 : min );
}
else if( framesPerHostBuffer > max )
{
PA_DEBUG(( "%s: The determined period size (%lu) is greater than maximum (%lu)\n", __FUNCTION__, framesPerHostBuffer, max ));
framesPerHostBuffer = (( minmax_diff == 2 ) ? max - 1 : max );
}
PA_DEBUG(( "%s: device period minimum = %lu\n", __FUNCTION__, min ));
PA_DEBUG(( "%s: device period maximum = %lu\n", __FUNCTION__, max ));
PA_DEBUG(( "%s: host buffer period = %lu\n", __FUNCTION__, framesPerHostBuffer ));
PA_DEBUG(( "%s: host buffer period latency = %f\n", __FUNCTION__, (double)( framesPerHostBuffer / sampleRate ) ));
/* Try setting period size */
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_set_period_size_near( self->pcm, hwParams, &framesPerHostBuffer, &dir ), paUnanticipatedHostError );
if( dir != 0 )
{
PA_DEBUG(( "%s: The configured period size is non-integer.\n", __FUNCTION__, dir ));
*accurate = 0;
}
}
/* Set result */
self->framesPerPeriod = framesPerHostBuffer;
error:
return result;
}
/* We need to determine how many frames per host buffer (period) to use. Our
* goals are to provide the best possible performance, but also to
* honor the requested latency settings as closely as we can. Therefore this
* decision is based on:
*
* - the period sizes that playback and/or capture support. The
* host buffer size has to be one of these.
* - the number of periods that playback and/or capture support.
*
* We want to make period_size*(num_periods-1) to be as close as possible
* to latency*rate for both playback and capture.
*
* This method will determine suitable period sizes for capture and playback handles, and report the maximum number of
* frames per host buffer. The latter is relevant, in case we should be so unfortunate that the period size differs
* between capture and playback. If this should happen, the stream's hostBufferSizeMode attribute will be set to
* paUtilBoundedHostBufferSize, because the best we can do is limit the size of individual host buffers to the upper
* bound. The size of host buffers scheduled for processing should only matter if the user has specified a buffer size,
* but when he/she does we must strive for an optimal configuration. By default we'll opt for a fixed host buffer size,
* which should be fine if the period size is the same for capture and playback. In general, if there is a specified user
* buffer size, this method tries it best to determine a period size which is a multiple of the user buffer size.
*
* The framesPerPeriod attributes of the individual capture and playback components of the stream are set to corresponding
* values determined here. Since these should be reported as
*
* This is one of those blocks of code that will just take a lot of
* refinement to be any good.
*
* In the full-duplex case it is possible that the routine was unable
* to find a number of frames per buffer acceptable to both devices
* TODO: Implement an algorithm to find the value closest to acceptance
* by both devices, to minimize difference between period sizes?
*
* @param determinedFramesPerHostBuffer: The determined host buffer size.
*/
static PaError PaAlsaStream_DetermineFramesPerBuffer( PaAlsaStream* self, double sampleRate, const PaStreamParameters* inputParameters,
const PaStreamParameters* outputParameters, unsigned long framesPerUserBuffer, snd_pcm_hw_params_t* hwParamsCapture,
snd_pcm_hw_params_t* hwParamsPlayback, PaUtilHostBufferSizeMode* hostBufferSizeMode )
{
PaError result = paNoError;
unsigned long framesPerHostBuffer = 0;
int dir = 0;
int accurate = 1;
unsigned numPeriods = numPeriods_;
if( self->capture.pcm && self->playback.pcm )
{
if( framesPerUserBuffer == paFramesPerBufferUnspecified )
{
/* Come up with a common desired latency */
snd_pcm_uframes_t desiredBufSz, e, minPeriodSize, maxPeriodSize, optimalPeriodSize, periodSize,
minCapture, minPlayback, maxCapture, maxPlayback;
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_period_size_min( hwParamsCapture, &minCapture, &dir ), paUnanticipatedHostError );
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_period_size_min( hwParamsPlayback, &minPlayback, &dir ), paUnanticipatedHostError );
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_period_size_max( hwParamsCapture, &maxCapture, &dir ), paUnanticipatedHostError );
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_period_size_max( hwParamsPlayback, &maxPlayback, &dir ), paUnanticipatedHostError );
minPeriodSize = PA_MAX( minPlayback, minCapture );
maxPeriodSize = PA_MIN( maxPlayback, maxCapture );
PA_UNLESS( minPeriodSize <= maxPeriodSize, paBadIODeviceCombination );
desiredBufSz = (snd_pcm_uframes_t)( PA_MIN( outputParameters->suggestedLatency, inputParameters->suggestedLatency )
* sampleRate );
/* Clamp desiredBufSz */
{
snd_pcm_uframes_t maxBufferSize;
snd_pcm_uframes_t maxBufferSizeCapture, maxBufferSizePlayback;
ENSURE_( alsa_snd_pcm_hw_params_get_buffer_size_max( hwParamsCapture, &maxBufferSizeCapture ), paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_hw_params_get_buffer_size_max( hwParamsPlayback, &maxBufferSizePlayback ), paUnanticipatedHostError );
maxBufferSize = PA_MIN( maxBufferSizeCapture, maxBufferSizePlayback );
desiredBufSz = PA_MIN( desiredBufSz, maxBufferSize );
}
/* Find the closest power of 2 */
e = ilogb( minPeriodSize );
if( minPeriodSize & ( minPeriodSize - 1 ) )
e += 1;
periodSize = (snd_pcm_uframes_t)pow( 2, e );
while( periodSize <= maxPeriodSize )
{
if( alsa_snd_pcm_hw_params_test_period_size( self->playback.pcm, hwParamsPlayback, periodSize, 0 ) >= 0 &&
alsa_snd_pcm_hw_params_test_period_size( self->capture.pcm, hwParamsCapture, periodSize, 0 ) >= 0 )
{
/* OK! */
break;
}
periodSize *= 2;
}
optimalPeriodSize = PA_MAX( desiredBufSz / numPeriods, minPeriodSize );
optimalPeriodSize = PA_MIN( optimalPeriodSize, maxPeriodSize );
/* Find the closest power of 2 */
e = ilogb( optimalPeriodSize );
if( optimalPeriodSize & (optimalPeriodSize - 1) )
e += 1;
optimalPeriodSize = (snd_pcm_uframes_t)pow( 2, e );
while( optimalPeriodSize >= periodSize )
{
if( alsa_snd_pcm_hw_params_test_period_size( self->capture.pcm, hwParamsCapture, optimalPeriodSize, 0 )
>= 0 && alsa_snd_pcm_hw_params_test_period_size( self->playback.pcm, hwParamsPlayback,
optimalPeriodSize, 0 ) >= 0 )
{
break;
}
optimalPeriodSize /= 2;
}
if( optimalPeriodSize > periodSize )
periodSize = optimalPeriodSize;
if( periodSize <= maxPeriodSize )
{
/* Looks good, the periodSize _should_ be acceptable by both devices */
ENSURE_( alsa_snd_pcm_hw_params_set_period_size( self->capture.pcm, hwParamsCapture, periodSize, 0 ),
paUnanticipatedHostError );
ENSURE_( alsa_snd_pcm_hw_params_set_period_size( self->playback.pcm, hwParamsPlayback, periodSize, 0 ),
paUnanticipatedHostError );
self->capture.framesPerPeriod = self->playback.framesPerPeriod = periodSize;
framesPerHostBuffer = periodSize;
}
else
{
/* Unable to find a common period size, oh well */
optimalPeriodSize = PA_MAX( desiredBufSz / numPeriods, minPeriodSize );
optimalPeriodSize = PA_MIN( optimalPeriodSize, maxPeriodSize );
self->capture.framesPerPeriod = optimalPeriodSize;
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_set_period_size_near( self->capture.pcm, hwParamsCapture, &self->capture.framesPerPeriod, &dir ),
paUnanticipatedHostError );
self->playback.framesPerPeriod = optimalPeriodSize;
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_set_period_size_near( self->playback.pcm, hwParamsPlayback, &self->playback.framesPerPeriod, &dir ),
paUnanticipatedHostError );
framesPerHostBuffer = PA_MAX( self->capture.framesPerPeriod, self->playback.framesPerPeriod );
*hostBufferSizeMode = paUtilBoundedHostBufferSize;
}
}
else
{
/* We choose the simple route and determine a suitable number of frames per buffer for one component of
* the stream, then we hope that this will work for the other component too (it should!).
*/
unsigned maxPeriods = 0;
PaAlsaStreamComponent* first = &self->capture, * second = &self->playback;
const PaStreamParameters* firstStreamParams = inputParameters;
snd_pcm_hw_params_t* firstHwParams = hwParamsCapture, * secondHwParams = hwParamsPlayback;
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_periods_max( hwParamsPlayback, &maxPeriods, &dir ), paUnanticipatedHostError );
if( maxPeriods < numPeriods )
{
/* The playback component is trickier to get right, try that first */
first = &self->playback;
second = &self->capture;
firstStreamParams = outputParameters;
firstHwParams = hwParamsPlayback;
secondHwParams = hwParamsCapture;
}
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( first, firstStreamParams, framesPerUserBuffer,
sampleRate, firstHwParams, &accurate ) );
second->framesPerPeriod = first->framesPerPeriod;
dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_set_period_size_near( second->pcm, secondHwParams, &second->framesPerPeriod, &dir ),
paUnanticipatedHostError );
if( self->capture.framesPerPeriod == self->playback.framesPerPeriod )
{
framesPerHostBuffer = self->capture.framesPerPeriod;
}
else
{
framesPerHostBuffer = PA_MAX( self->capture.framesPerPeriod, self->playback.framesPerPeriod );
*hostBufferSizeMode = paUtilBoundedHostBufferSize;
}
}
}
else /* half-duplex is a slightly simpler case */
{
if( self->capture.pcm )
{
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( &self->capture, inputParameters, framesPerUserBuffer,
sampleRate, hwParamsCapture, &accurate) );
framesPerHostBuffer = self->capture.framesPerPeriod;
}
else
{
assert( self->playback.pcm );
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( &self->playback, outputParameters, framesPerUserBuffer,
sampleRate, hwParamsPlayback, &accurate ) );
framesPerHostBuffer = self->playback.framesPerPeriod;
}
}
PA_UNLESS( framesPerHostBuffer != 0, paInternalError );
self->maxFramesPerHostBuffer = framesPerHostBuffer;
if( !self->playback.canMmap || !accurate )
{
/* Don't know the exact size per host buffer */
*hostBufferSizeMode = paUtilBoundedHostBufferSize;
/* Raise upper bound */
if( !accurate )
++self->maxFramesPerHostBuffer;
}
error:
return result;
}
/** Set up ALSA stream parameters.
*
*/
static PaError PaAlsaStream_Configure( PaAlsaStream *self, const PaStreamParameters *inParams, const PaStreamParameters*
outParams, double sampleRate, unsigned long framesPerUserBuffer, double* inputLatency, double* outputLatency,
PaUtilHostBufferSizeMode* hostBufferSizeMode )
{
PaError result = paNoError;
double realSr = sampleRate;
snd_pcm_hw_params_t* hwParamsCapture, * hwParamsPlayback;
alsa_snd_pcm_hw_params_alloca( &hwParamsCapture );
alsa_snd_pcm_hw_params_alloca( &hwParamsPlayback );
if( self->capture.pcm )
PA_ENSURE( PaAlsaStreamComponent_InitialConfigure( &self->capture, inParams, self->primeBuffers, hwParamsCapture,
&realSr ) );
if( self->playback.pcm )
PA_ENSURE( PaAlsaStreamComponent_InitialConfigure( &self->playback, outParams, self->primeBuffers, hwParamsPlayback,
&realSr ) );
PA_ENSURE( PaAlsaStream_DetermineFramesPerBuffer( self, realSr, inParams, outParams, framesPerUserBuffer,
hwParamsCapture, hwParamsPlayback, hostBufferSizeMode ) );
if( self->capture.pcm )
{
assert( self->capture.framesPerPeriod != 0 );
PA_ENSURE( PaAlsaStreamComponent_FinishConfigure( &self->capture, hwParamsCapture, inParams, self->primeBuffers, realSr,
inputLatency ) );
PA_DEBUG(( "%s: Capture period size: %lu, latency: %f\n", __FUNCTION__, self->capture.framesPerPeriod, *inputLatency ));
}
if( self->playback.pcm )
{
assert( self->playback.framesPerPeriod != 0 );
PA_ENSURE( PaAlsaStreamComponent_FinishConfigure( &self->playback, hwParamsPlayback, outParams, self->primeBuffers, realSr,
outputLatency ) );
PA_DEBUG(( "%s: Playback period size: %lu, latency: %f\n", __FUNCTION__, self->playback.framesPerPeriod, *outputLatency ));
}
/* Should be exact now */
self->streamRepresentation.streamInfo.sampleRate = realSr;
/* this will cause the two streams to automatically start/stop/prepare in sync.
* We only need to execute these operations on one of the pair.
* A: We don't want to do this on a blocking stream.
*/
if( self->callbackMode && self->capture.pcm && self->playback.pcm )
{
int err = alsa_snd_pcm_link( self->capture.pcm, self->playback.pcm );
if( err == 0 )
self->pcmsSynced = 1;
else
PA_DEBUG(( "%s: Unable to sync pcms: %s\n", __FUNCTION__, alsa_snd_strerror( err ) ));
}
{
unsigned long minFramesPerHostBuffer = PA_MIN( self->capture.pcm ? self->capture.framesPerPeriod : ULONG_MAX,
self->playback.pcm ? self->playback.framesPerPeriod : ULONG_MAX );
self->pollTimeout = CalculatePollTimeout( self, minFramesPerHostBuffer ); /* Period in msecs, rounded up */
/* Time before watchdog unthrottles realtime thread == 1/4 of period time in msecs */
/* self->threading.throttledSleepTime = (unsigned long) (minFramesPerHostBuffer / sampleRate / 4 * 1000); */
}
if( self->callbackMode )
{
/* If the user expects a certain number of frames per callback we will either have to rely on block adaption
* (framesPerHostBuffer is not an integer multiple of framesPerPeriod) or we can simply align the number
* of host buffer frames with what the user specified */
if( self->framesPerUserBuffer != paFramesPerBufferUnspecified )
{
/* self->alignFrames = 1; */
/* Unless the ratio between number of host and user buffer frames is an integer we will have to rely
* on block adaption */
/*
if( framesPerHostBuffer % framesPerPeriod != 0 || (self->capture.pcm && self->playback.pcm &&
self->capture.framesPerPeriod != self->playback.framesPerPeriod) )
self->useBlockAdaption = 1;
else
self->alignFrames = 1;
*/
}
}
error:
return result;
}
static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi,
PaStream** s,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate,
unsigned long framesPerBuffer,
PaStreamFlags streamFlags,
PaStreamCallback* callback,
void *userData )
{
PaError result = paNoError;
PaAlsaHostApiRepresentation *alsaHostApi = (PaAlsaHostApiRepresentation*)hostApi;
PaAlsaStream *stream = NULL;
PaSampleFormat hostInputSampleFormat = 0, hostOutputSampleFormat = 0;
PaSampleFormat inputSampleFormat = 0, outputSampleFormat = 0;
int numInputChannels = 0, numOutputChannels = 0;
PaTime inputLatency, outputLatency;
/* Operate with fixed host buffer size by default, since other modes will invariably lead to block adaption */
/* XXX: Use Bounded by default? Output tends to get stuttery with Fixed ... */
PaUtilHostBufferSizeMode hostBufferSizeMode = paUtilFixedHostBufferSize;
if( ( streamFlags & paPlatformSpecificFlags ) != 0 )
return paInvalidFlag;
if( inputParameters )
{
PA_ENSURE( ValidateParameters( inputParameters, hostApi, StreamDirection_In ) );
numInputChannels = inputParameters->channelCount;
inputSampleFormat = inputParameters->sampleFormat;
}
if( outputParameters )
{
PA_ENSURE( ValidateParameters( outputParameters, hostApi, StreamDirection_Out ) );
numOutputChannels = outputParameters->channelCount;
outputSampleFormat = outputParameters->sampleFormat;
}
/* XXX: Why do we support this anyway? */
if( framesPerBuffer == paFramesPerBufferUnspecified && getenv( "PA_ALSA_PERIODSIZE" ) != NULL )
{
PA_DEBUG(( "%s: Getting framesPerBuffer (Alsa period-size) from environment\n", __FUNCTION__ ));
framesPerBuffer = atoi( getenv("PA_ALSA_PERIODSIZE") );
}
PA_UNLESS( stream = (PaAlsaStream*)PaUtil_AllocateMemory( sizeof(PaAlsaStream) ), paInsufficientMemory );
PA_ENSURE( PaAlsaStream_Initialize( stream, alsaHostApi, inputParameters, outputParameters, sampleRate,
framesPerBuffer, callback, streamFlags, userData ) );
PA_ENSURE( PaAlsaStream_Configure( stream, inputParameters, outputParameters, sampleRate, framesPerBuffer,
&inputLatency, &outputLatency, &hostBufferSizeMode ) );
hostInputSampleFormat = stream->capture.hostSampleFormat | (!stream->capture.hostInterleaved ? paNonInterleaved : 0);
hostOutputSampleFormat = stream->playback.hostSampleFormat | (!stream->playback.hostInterleaved ? paNonInterleaved : 0);
PA_ENSURE( PaUtil_InitializeBufferProcessor( &stream->bufferProcessor,
numInputChannels, inputSampleFormat, hostInputSampleFormat,
numOutputChannels, outputSampleFormat, hostOutputSampleFormat,
sampleRate, streamFlags, framesPerBuffer, stream->maxFramesPerHostBuffer,
hostBufferSizeMode, callback, userData ) );
/* Ok, buffer processor is initialized, now we can deduce it's latency */
if( numInputChannels > 0 )
stream->streamRepresentation.streamInfo.inputLatency = inputLatency + (PaTime)(
PaUtil_GetBufferProcessorInputLatencyFrames( &stream->bufferProcessor ) / sampleRate);
if( numOutputChannels > 0 )
stream->streamRepresentation.streamInfo.outputLatency = outputLatency + (PaTime)(
PaUtil_GetBufferProcessorOutputLatencyFrames( &stream->bufferProcessor ) / sampleRate);
PA_DEBUG(( "%s: Stream: framesPerBuffer = %lu, maxFramesPerHostBuffer = %lu, latency i=%f, o=%f\n", __FUNCTION__, framesPerBuffer, stream->maxFramesPerHostBuffer, stream->streamRepresentation.streamInfo.inputLatency, stream->streamRepresentation.streamInfo.outputLatency));
*s = (PaStream*)stream;
return result;
error:
if( stream )
{
PA_DEBUG(( "%s: Stream in error, terminating\n", __FUNCTION__ ));
PaAlsaStream_Terminate( stream );
}
return result;
}
static PaError CloseStream( PaStream* s )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
PaUtil_TerminateBufferProcessor( &stream->bufferProcessor );
PaUtil_TerminateStreamRepresentation( &stream->streamRepresentation );
PaAlsaStream_Terminate( stream );
return result;
}
static void SilenceBuffer( PaAlsaStream *stream )
{
const snd_pcm_channel_area_t *areas;
snd_pcm_uframes_t frames = (snd_pcm_uframes_t)alsa_snd_pcm_avail_update( stream->playback.pcm ), offset;
alsa_snd_pcm_mmap_begin( stream->playback.pcm, &areas, &offset, &frames );
alsa_snd_pcm_areas_silence( areas, offset, stream->playback.numHostChannels, frames, stream->playback.nativeFormat );
alsa_snd_pcm_mmap_commit( stream->playback.pcm, offset, frames );
}
/** Start/prepare pcm(s) for streaming.
*
* Depending on whether the stream is in callback or blocking mode, we will respectively start or simply
* prepare the playback pcm. If the buffer has _not_ been primed, we will in callback mode prepare and
* silence the buffer before starting playback. In blocking mode we simply prepare, as the playback will
* be started automatically as the user writes to output.
*
* The capture pcm, however, will simply be prepared and started.
*/
static PaError AlsaStart( PaAlsaStream *stream, int priming )
{
PaError result = paNoError;
if( stream->playback.pcm )
{
if( stream->callbackMode )
{
if( !priming )
{
/* Buffer isn't primed, so prepare and silence */
ENSURE_( alsa_snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
if( stream->playback.canMmap )
SilenceBuffer( stream );
}
if( stream->playback.canMmap )
ENSURE_( alsa_snd_pcm_start( stream->playback.pcm ), paUnanticipatedHostError );
}
else
ENSURE_( alsa_snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
}
if( stream->capture.pcm && !stream->pcmsSynced )
{
ENSURE_( alsa_snd_pcm_prepare( stream->capture.pcm ), paUnanticipatedHostError );
/* For a blocking stream we want to start capture as well, since nothing will happen otherwise */
ENSURE_( alsa_snd_pcm_start( stream->capture.pcm ), paUnanticipatedHostError );
}
end:
return result;
error:
goto end;
}
/** Utility function for determining if pcms are in running state.
*
*/
#if 0
static int IsRunning( PaAlsaStream *stream )
{
int result = 0;
PA_ENSURE( PaUnixMutex_Lock( &stream->stateMtx ) );
if( stream->capture.pcm )
{
snd_pcm_state_t capture_state = alsa_snd_pcm_state( stream->capture.pcm );
if( capture_state == SND_PCM_STATE_RUNNING || capture_state == SND_PCM_STATE_XRUN
|| capture_state == SND_PCM_STATE_DRAINING )
{
result = 1;
goto end;
}
}
if( stream->playback.pcm )
{
snd_pcm_state_t playback_state = alsa_snd_pcm_state( stream->playback.pcm );
if( playback_state == SND_PCM_STATE_RUNNING || playback_state == SND_PCM_STATE_XRUN
|| playback_state == SND_PCM_STATE_DRAINING )
{
result = 1;
goto end;
}
}
end:
ASSERT_CALL_( PaUnixMutex_Unlock( &stream->stateMtx ), paNoError );
return result;
error:
goto error;
}
#endif
static PaError StartStream( PaStream *s )
{
PaError result = paNoError;
PaAlsaStream* stream = (PaAlsaStream*)s;
int streamStarted = 0; /* So we can know whether we need to take the stream down */
/* Ready the processor */
PaUtil_ResetBufferProcessor( &stream->bufferProcessor );
/* Set now, so we can test for activity further down */
stream->isActive = 1;
if( stream->callbackMode )
{
PA_ENSURE( PaUnixThread_New( &stream->thread, &CallbackThreadFunc, stream, 1., stream->rtSched ) );
}
else
{
PA_ENSURE( AlsaStart( stream, 0 ) );
streamStarted = 1;
}
end:
return result;
error:
if( streamStarted )
{
AbortStream( stream );
}
stream->isActive = 0;
goto end;
}
/** Stop PCM handle, either softly or abruptly.
*/
static PaError AlsaStop( PaAlsaStream *stream, int abort )
{
PaError result = paNoError;
/* XXX: alsa_snd_pcm_drain tends to lock up, avoid it until we find out more */
abort = 1;
/*
if( stream->capture.pcm && !strcmp( Pa_GetDeviceInfo( stream->capture.device )->name,
"dmix" ) )
{
abort = 1;
}
else if( stream->playback.pcm && !strcmp( Pa_GetDeviceInfo( stream->playback.device )->name,
"dmix" ) )
{
abort = 1;
}
*/
if( abort )
{
if( stream->playback.pcm )
{
ENSURE_( alsa_snd_pcm_drop( stream->playback.pcm ), paUnanticipatedHostError );
}
if( stream->capture.pcm && !stream->pcmsSynced )
{
ENSURE_( alsa_snd_pcm_drop( stream->capture.pcm ), paUnanticipatedHostError );
}
PA_DEBUG(( "%s: Dropped frames\n", __FUNCTION__ ));
}
else
{
if( stream->playback.pcm )
{
ENSURE_( alsa_snd_pcm_nonblock( stream->playback.pcm, 0 ), paUnanticipatedHostError );
if( alsa_snd_pcm_drain( stream->playback.pcm ) < 0 )
{
PA_DEBUG(( "%s: Draining playback handle failed!\n", __FUNCTION__ ));
}
}
if( stream->capture.pcm && !stream->pcmsSynced )
{
/* We don't need to retrieve any remaining frames */
if( alsa_snd_pcm_drain( stream->capture.pcm ) < 0 )
{
PA_DEBUG(( "%s: Draining capture handle failed!\n", __FUNCTION__ ));
}
}
}
end:
return result;
error:
goto end;
}
/** Stop or abort stream.
*
* If a stream is in callback mode we will have to inspect whether the background thread has
* finished, or we will have to take it out. In either case we join the thread before
* returning. In blocking mode, we simply tell ALSA to stop abruptly (abort) or finish
* buffers (drain)
*
* Stream will be considered inactive (!PaAlsaStream::isActive) after a call to this function
*/
static PaError RealStop( PaAlsaStream *stream, int abort )
{
PaError result = paNoError;
/* First deal with the callback thread, cancelling and/or joining
* it if necessary
*/
if( stream->callbackMode )
{
PaError threadRes;
stream->callbackAbort = abort;
if( !abort )
{
PA_DEBUG(( "Stopping callback\n" ));
}
PA_ENSURE( PaUnixThread_Terminate( &stream->thread, !abort, &threadRes ) );
if( threadRes != paNoError )
{
PA_DEBUG(( "Callback thread returned: %d\n", threadRes ));
}
#if 0
if( watchdogRes != paNoError )
PA_DEBUG(( "Watchdog thread returned: %d\n", watchdogRes ));
#endif
stream->callback_finished = 0;
}
else
{
PA_ENSURE( AlsaStop( stream, abort ) );
}
stream->isActive = 0;
end:
return result;
error:
goto end;
}
static PaError StopStream( PaStream *s )
{
return RealStop( (PaAlsaStream *) s, 0 );
}
static PaError AbortStream( PaStream *s )
{
return RealStop( (PaAlsaStream * ) s, 1 );
}
/** The stream is considered stopped before StartStream, or AFTER a call to Abort/StopStream (callback
* returning !paContinue is not considered)
*
*/
static PaError IsStreamStopped( PaStream *s )
{
PaAlsaStream *stream = (PaAlsaStream *)s;
/* callback_finished indicates we need to join callback thread (ie. in Abort/StopStream) */
return !IsStreamActive( s ) && !stream->callback_finished;
}
static PaError IsStreamActive( PaStream *s )
{
PaAlsaStream *stream = (PaAlsaStream*)s;
return stream->isActive;
}
static PaTime GetStreamTime( PaStream *s )
{
PaAlsaStream *stream = (PaAlsaStream*)s;
snd_timestamp_t timestamp;
snd_pcm_status_t* status;
alsa_snd_pcm_status_alloca( &status );
/* TODO: what if we have both? does it really matter? */
/* TODO: if running in callback mode, this will mean
* libasound routines are being called from multiple threads.
* need to verify that libasound is thread-safe. */
if( stream->capture.pcm )
{
alsa_snd_pcm_status( stream->capture.pcm, status );
}
else if( stream->playback.pcm )
{
alsa_snd_pcm_status( stream->playback.pcm, status );
}
alsa_snd_pcm_status_get_tstamp( status, &timestamp );
return timestamp.tv_sec + (PaTime)timestamp.tv_usec / 1e6;
}
static double GetStreamCpuLoad( PaStream* s )
{
PaAlsaStream *stream = (PaAlsaStream*)s;
return PaUtil_GetCpuLoad( &stream->cpuLoadMeasurer );
}
/* Set the stream sample rate to a nominal value requested; allow only a defined tolerance range */
static int SetApproximateSampleRate( snd_pcm_t *pcm, snd_pcm_hw_params_t *hwParams, double sampleRate )
{
PaError result = paNoError;
unsigned int reqRate, setRate, deviation;
assert( pcm && hwParams );
/* The Alsa sample rate is set by integer value; also the actual rate may differ */
reqRate = setRate = (unsigned int) sampleRate;
ENSURE_( alsa_snd_pcm_hw_params_set_rate_near( pcm, hwParams, &setRate, NULL ), paUnanticipatedHostError );
/* The value actually set will be put in 'setRate' (may be way off); check the deviation as a proportion
* of the requested-rate with reference to the max-deviate-ratio (larger values allow less deviation) */
deviation = abs( (int)setRate - (int)reqRate );
if( deviation > 0 && deviation * RATE_MAX_DEVIATE_RATIO > reqRate )
result = paInvalidSampleRate;
end:
return result;
error:
/* Log */
{
unsigned int _min = 0, _max = 0;
int _dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_rate_min( hwParams, &_min, &_dir ), paUnanticipatedHostError );
_dir = 0;
ENSURE_( alsa_snd_pcm_hw_params_get_rate_max( hwParams, &_max, &_dir ), paUnanticipatedHostError );
PA_DEBUG(( "%s: SR min = %u, max = %u, req = %u\n", __FUNCTION__, _min, _max, reqRate ));
}
goto end;
}
/* Return exact sample rate in param sampleRate */
static int GetExactSampleRate( snd_pcm_hw_params_t *hwParams, double *sampleRate )
{
unsigned int num, den = 1;
int err;
assert( hwParams );
err = alsa_snd_pcm_hw_params_get_rate_numden( hwParams, &num, &den );
*sampleRate = (double) num / den;
return err;
}
/* Utility functions for blocking/callback interfaces */
/* Atomic restart of stream (we don't want the intermediate state visible) */
static PaError AlsaRestart( PaAlsaStream *stream )
{
PaError result = paNoError;
PA_ENSURE( PaUnixMutex_Lock( &stream->stateMtx ) );
PA_ENSURE( AlsaStop( stream, 0 ) );
PA_ENSURE( AlsaStart( stream, 0 ) );
PA_DEBUG(( "%s: Restarted audio\n", __FUNCTION__ ));
error:
PA_ENSURE( PaUnixMutex_Unlock( &stream->stateMtx ) );
return result;
}
/** Recover from xrun state.
*
*/
static PaError PaAlsaStream_HandleXrun( PaAlsaStream *self )
{
PaError result = paNoError;
snd_pcm_status_t *st;
PaTime now = PaUtil_GetTime();
snd_timestamp_t t;
int restartAlsa = 0; /* do not restart Alsa by default */
alsa_snd_pcm_status_alloca( &st );
if( self->playback.pcm )
{
alsa_snd_pcm_status( self->playback.pcm, st );
if( alsa_snd_pcm_status_get_state( st ) == SND_PCM_STATE_XRUN )
{
alsa_snd_pcm_status_get_trigger_tstamp( st, &t );
self->underrun = now * 1000 - ( (PaTime)t.tv_sec * 1000 + (PaTime)t.tv_usec / 1000 );
if( !self->playback.canMmap )
{
if( alsa_snd_pcm_recover( self->playback.pcm, -EPIPE, 0 ) < 0 )
{
PA_DEBUG(( "%s: [playback] non-MMAP-PCM failed recovering from XRUN, will restart Alsa\n", __FUNCTION__ ));
++ restartAlsa; /* did not manage to recover */
}
}
else
++ restartAlsa; /* always restart MMAPed device */
}
}
if( self->capture.pcm )
{
alsa_snd_pcm_status( self->capture.pcm, st );
if( alsa_snd_pcm_status_get_state( st ) == SND_PCM_STATE_XRUN )
{
alsa_snd_pcm_status_get_trigger_tstamp( st, &t );
self->overrun = now * 1000 - ((PaTime) t.tv_sec * 1000 + (PaTime) t.tv_usec / 1000);
if (!self->capture.canMmap)
{
if (alsa_snd_pcm_recover( self->capture.pcm, -EPIPE, 0 ) < 0)
{
PA_DEBUG(( "%s: [capture] non-MMAP-PCM failed recovering from XRUN, will restart Alsa\n", __FUNCTION__ ));
++ restartAlsa; /* did not manage to recover */
}
}
else
++ restartAlsa; /* always restart MMAPed device */
}
}
if( restartAlsa )
{
PA_DEBUG(( "%s: restarting Alsa to recover from XRUN\n", __FUNCTION__ ));
PA_ENSURE( AlsaRestart( self ) );
}
end:
return result;
error:
goto end;
}
/** Decide if we should continue polling for specified direction, eventually adjust the poll timeout.
*
*/
static PaError ContinuePoll( const PaAlsaStream *stream, StreamDirection streamDir, int *pollTimeout, int *continuePoll )
{
PaError result = paNoError;
snd_pcm_sframes_t delay, margin;
int err;
const PaAlsaStreamComponent *component = NULL, *otherComponent = NULL;
*continuePoll = 1;
if( StreamDirection_In == streamDir )
{
component = &stream->capture;
otherComponent = &stream->playback;
}
else
{
component = &stream->playback;
otherComponent = &stream->capture;
}
/* ALSA docs say that negative delay should indicate xrun, but in my experience alsa_snd_pcm_delay returns -EPIPE */
if( ( err = alsa_snd_pcm_delay( otherComponent->pcm, &delay ) ) < 0 )
{
if( err == -EPIPE )
{
/* Xrun */
*continuePoll = 0;
goto error;
}
ENSURE_( err, paUnanticipatedHostError );
}
if( StreamDirection_Out == streamDir )
{
/* Number of eligible frames before capture overrun */
delay = otherComponent->alsaBufferSize - delay;
}
margin = delay - otherComponent->framesPerPeriod / 2;
if( margin < 0 )
{
PA_DEBUG(( "%s: Stopping poll for %s\n", __FUNCTION__, StreamDirection_In == streamDir ? "capture" : "playback" ));
*continuePoll = 0;
}
else if( margin < otherComponent->framesPerPeriod )
{
*pollTimeout = CalculatePollTimeout( stream, margin );
PA_DEBUG(( "%s: Trying to poll again for %s frames, pollTimeout: %d\n",
__FUNCTION__, StreamDirection_In == streamDir ? "capture" : "playback", *pollTimeout ));
}
error:
return result;
}
/* Callback interface */
static void OnExit( void *data )
{
PaAlsaStream *stream = (PaAlsaStream *) data;
assert( data );
PaUtil_ResetCpuLoadMeasurer( &stream->cpuLoadMeasurer );
stream->callback_finished = 1; /* Let the outside world know stream was stopped in callback */
PA_DEBUG(( "%s: Stopping ALSA handles\n", __FUNCTION__ ));
AlsaStop( stream, stream->callbackAbort );
PA_DEBUG(( "%s: Stoppage\n", __FUNCTION__ ));
/* Eventually notify user all buffers have played */
if( stream->streamRepresentation.streamFinishedCallback )
{
stream->streamRepresentation.streamFinishedCallback( stream->streamRepresentation.userData );
}
stream->isActive = 0;
}
static void CalculateTimeInfo( PaAlsaStream *stream, PaStreamCallbackTimeInfo *timeInfo )
{
snd_pcm_status_t *capture_status, *playback_status;
snd_timestamp_t capture_timestamp, playback_timestamp;
PaTime capture_time = 0., playback_time = 0.;
alsa_snd_pcm_status_alloca( &capture_status );
alsa_snd_pcm_status_alloca( &playback_status );
if( stream->capture.pcm )
{
snd_pcm_sframes_t capture_delay;
alsa_snd_pcm_status( stream->capture.pcm, capture_status );
alsa_snd_pcm_status_get_tstamp( capture_status, &capture_timestamp );
capture_time = capture_timestamp.tv_sec +
( (PaTime)capture_timestamp.tv_usec / 1000000.0 );
timeInfo->currentTime = capture_time;
capture_delay = alsa_snd_pcm_status_get_delay( capture_status );
timeInfo->inputBufferAdcTime = timeInfo->currentTime -
(PaTime)capture_delay / stream->streamRepresentation.streamInfo.sampleRate;
}
if( stream->playback.pcm )
{
snd_pcm_sframes_t playback_delay;
alsa_snd_pcm_status( stream->playback.pcm, playback_status );
alsa_snd_pcm_status_get_tstamp( playback_status, &playback_timestamp );
playback_time = playback_timestamp.tv_sec +
((PaTime)playback_timestamp.tv_usec / 1000000.0);
if( stream->capture.pcm ) /* Full duplex */
{
/* Hmm, we have both a playback and a capture timestamp.
* Hopefully they are the same... */
if( fabs( capture_time - playback_time ) > 0.01 )
PA_DEBUG(( "Capture time and playback time differ by %f\n", fabs( capture_time-playback_time ) ));
}
else
timeInfo->currentTime = playback_time;
playback_delay = alsa_snd_pcm_status_get_delay( playback_status );
timeInfo->outputBufferDacTime = timeInfo->currentTime +
(PaTime)playback_delay / stream->streamRepresentation.streamInfo.sampleRate;
}
}
/** Called after buffer processing is finished.
*
* A number of mmapped frames is committed, it is possible that an xrun has occurred in the meantime.
*
* @param numFrames The number of frames that has been processed
* @param xrun Return whether an xrun has occurred
*/
static PaError PaAlsaStreamComponent_EndProcessing( PaAlsaStreamComponent *self, unsigned long numFrames, int *xrun )
{
PaError result = paNoError;
int res = 0;
/* @concern FullDuplex It is possible that only one direction is marked ready after polling, and processed
* afterwards
*/
if( !self->ready )
goto end;
if( !self->canMmap && StreamDirection_Out == self->streamDir )
{
/* Play sound */
if( self->hostInterleaved )
res = alsa_snd_pcm_writei( self->pcm, self->nonMmapBuffer, numFrames );
else
{
void *bufs[self->numHostChannels];
int bufsize = alsa_snd_pcm_format_size( self->nativeFormat, self->framesPerPeriod + 1 );
unsigned char *buffer = self->nonMmapBuffer;
int i;
for( i = 0; i < self->numHostChannels; ++i )
{
bufs[i] = buffer;
buffer += bufsize;
}
res = alsa_snd_pcm_writen( self->pcm, bufs, numFrames );
}
}
if( self->canMmap )
res = alsa_snd_pcm_mmap_commit( self->pcm, self->offset, numFrames );
if( res == -EPIPE || res == -ESTRPIPE )
{
*xrun = 1;
}
else
{
ENSURE_( res, paUnanticipatedHostError );
}
end:
error:
return result;
}
/* Extract buffer from channel area */
static unsigned char *ExtractAddress( const snd_pcm_channel_area_t *area, snd_pcm_uframes_t offset )
{
return (unsigned char *) area->addr + ( area->first + offset * area->step ) / 8;
}
/** Do necessary adaption between user and host channels.
*
@concern ChannelAdaption Adapting between user and host channels can involve silencing unused channels and
duplicating mono information if host outputs come in pairs.
*/
static PaError PaAlsaStreamComponent_DoChannelAdaption( PaAlsaStreamComponent *self, PaUtilBufferProcessor *bp, int numFrames )
{
PaError result = paNoError;
unsigned char *p;
int i;
int unusedChans = self->numHostChannels - self->numUserChannels;
unsigned char *src, *dst;
int convertMono = ( self->numHostChannels % 2 ) == 0 && ( self->numUserChannels % 2 ) != 0;
assert( StreamDirection_Out == self->streamDir );
if( self->hostInterleaved )
{
int swidth = alsa_snd_pcm_format_size( self->nativeFormat, 1 );
unsigned char *buffer = self->canMmap ? ExtractAddress( self->channelAreas, self->offset ) : self->nonMmapBuffer;
/* Start after the last user channel */
p = buffer + self->numUserChannels * swidth;
if( convertMono )
{
/* Convert the last user channel into stereo pair */
src = buffer + ( self->numUserChannels - 1 ) * swidth;
for( i = 0; i < numFrames; ++i )
{
dst = src + swidth;
memcpy( dst, src, swidth );
src += self->numHostChannels * swidth;
}
/* Don't touch the channel we just wrote to */
p += swidth;
--unusedChans;
}
if( unusedChans > 0 )
{
/* Silence unused output channels */
for( i = 0; i < numFrames; ++i )
{
memset( p, 0, swidth * unusedChans );
p += self->numHostChannels * swidth;
}
}
}
else
{
/* We extract the last user channel */
if( convertMono )
{
ENSURE_( alsa_snd_pcm_area_copy( self->channelAreas + self->numUserChannels, self->offset, self->channelAreas +
( self->numUserChannels - 1 ), self->offset, numFrames, self->nativeFormat ), paUnanticipatedHostError );
--unusedChans;
}
if( unusedChans > 0 )
{
alsa_snd_pcm_areas_silence( self->channelAreas + ( self->numHostChannels - unusedChans ), self->offset, unusedChans, numFrames,
self->nativeFormat );
}
}
error:
return result;
}
static PaError PaAlsaStream_EndProcessing( PaAlsaStream *self, unsigned long numFrames, int *xrunOccurred )
{
PaError result = paNoError;
int xrun = 0;
if( self->capture.pcm )
{
PA_ENSURE( PaAlsaStreamComponent_EndProcessing( &self->capture, numFrames, &xrun ) );
}
if( self->playback.pcm )
{
if( self->playback.numHostChannels > self->playback.numUserChannels )
{
PA_ENSURE( PaAlsaStreamComponent_DoChannelAdaption( &self->playback, &self->bufferProcessor, numFrames ) );
}
PA_ENSURE( PaAlsaStreamComponent_EndProcessing( &self->playback, numFrames, &xrun ) );
}
error:
*xrunOccurred = xrun;
return result;
}
/** Update the number of available frames.
*
*/
static PaError PaAlsaStreamComponent_GetAvailableFrames( PaAlsaStreamComponent *self, unsigned long *numFrames, int *xrunOccurred )
{
PaError result = paNoError;
snd_pcm_sframes_t framesAvail = alsa_snd_pcm_avail_update( self->pcm );
*xrunOccurred = 0;
if( -EPIPE == framesAvail )
{
*xrunOccurred = 1;
framesAvail = 0;
}
else
{
ENSURE_( framesAvail, paUnanticipatedHostError );
}
*numFrames = framesAvail;
error:
return result;
}
/** Fill in pollfd objects.
*/
static PaError PaAlsaStreamComponent_BeginPolling( PaAlsaStreamComponent* self, struct pollfd* pfds )
{
int nfds = alsa_snd_pcm_poll_descriptors( self->pcm, pfds, self->nfds );
/* If alsa returns anything else, like -EPIPE return */
if( nfds != self->nfds )
{
return paUnanticipatedHostError;
}
self->ready = 0;
return paNoError;
}
/** Examine results from poll().
*
* @param pfds pollfds to inspect
* @param shouldPoll Should we continue to poll
* @param xrun Has an xrun occurred
*/
static PaError PaAlsaStreamComponent_EndPolling( PaAlsaStreamComponent* self, struct pollfd* pfds, int* shouldPoll, int* xrun )
{
PaError result = paNoError;
unsigned short revents;
ENSURE_( alsa_snd_pcm_poll_descriptors_revents( self->pcm, pfds, self->nfds, &revents ), paUnanticipatedHostError );
if( revents != 0 )
{
if( revents & POLLERR )
{
*xrun = 1;
}
else if( revents & POLLHUP )
{
*xrun = 1;
PA_DEBUG(( "%s: revents has POLLHUP, processing as XRUN\n", __FUNCTION__ ));
}
else
self->ready = 1;
*shouldPoll = 0;
}
else /* (A zero revent occurred) */
/* Work around an issue with Alsa older than 1.0.16 using some plugins (eg default with plug + dmix) where
* POLLIN or POLLOUT are zeroed by Alsa-lib if _mmap_avail() is a few frames short of avail_min at period
* boundary, possibly due to erratic dma interrupts at period boundary? Treat as a valid event.
*/
if( self->useReventFix )
{
self->ready = 1;
*shouldPoll = 0;
}
error:
return result;
}
/** Return the number of available frames for this stream.
*
* @concern FullDuplex The minimum available for the two directions is calculated, it might be desirable to ignore
* one direction however (not marked ready from poll), so this is controlled by queryCapture and queryPlayback.
*
* @param queryCapture Check available for capture
* @param queryPlayback Check available for playback
* @param available The returned number of frames
* @param xrunOccurred Return whether an xrun has occurred
*/
static PaError PaAlsaStream_GetAvailableFrames( PaAlsaStream *self, int queryCapture, int queryPlayback, unsigned long
*available, int *xrunOccurred )
{
PaError result = paNoError;
unsigned long captureFrames, playbackFrames;
*xrunOccurred = 0;
assert( queryCapture || queryPlayback );
if( queryCapture )
{
assert( self->capture.pcm );
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &self->capture, &captureFrames, xrunOccurred ) );
if( *xrunOccurred )
{
goto end;
}
}
if( queryPlayback )
{
assert( self->playback.pcm );
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &self->playback, &playbackFrames, xrunOccurred ) );
if( *xrunOccurred )
{
goto end;
}
}
if( queryCapture && queryPlayback )
{
*available = PA_MIN( captureFrames, playbackFrames );
/*PA_DEBUG(("capture: %lu, playback: %lu, combined: %lu\n", captureFrames, playbackFrames, *available));*/
}
else if( queryCapture )
{
*available = captureFrames;
}
else
{
*available = playbackFrames;
}
end:
error:
return result;
}
/** Wait for and report available buffer space from ALSA.
*
* Unless ALSA reports a minimum of frames available for I/O, we poll the ALSA filedescriptors for more.
* Both of these operations can uncover xrun conditions.
*
* @concern Xruns Both polling and querying available frames can report an xrun condition.
*
* @param framesAvail Return the number of available frames
* @param xrunOccurred Return whether an xrun has occurred
*/
static PaError PaAlsaStream_WaitForFrames( PaAlsaStream *self, unsigned long *framesAvail, int *xrunOccurred )
{
PaError result = paNoError;
int pollPlayback = self->playback.pcm != NULL, pollCapture = self->capture.pcm != NULL;
int pollTimeout = self->pollTimeout;
int xrun = 0, timeouts = 0;
int pollResults;
assert( self );
assert( framesAvail );
if( !self->callbackMode )
{
/* In blocking mode we will only wait if necessary */
PA_ENSURE( PaAlsaStream_GetAvailableFrames( self, self->capture.pcm != NULL, self->playback.pcm != NULL,
framesAvail, &xrun ) );
if( xrun )
{
goto end;
}
if( *framesAvail > 0 )
{
/* Mark pcms ready from poll */
if( self->capture.pcm )
self->capture.ready = 1;
if( self->playback.pcm )
self->playback.ready = 1;
goto end;
}
}
while( pollPlayback || pollCapture )
{
int totalFds = 0;
struct pollfd *capturePfds = NULL, *playbackPfds = NULL;
#ifdef PTHREAD_CANCELED
pthread_testcancel();
#endif
if( pollCapture )
{
capturePfds = self->pfds;
PaError res = PaAlsaStreamComponent_BeginPolling( &self->capture, capturePfds );
if( res != paNoError)
{
xrun = 1;
goto end;
}
totalFds += self->capture.nfds;
}
if( pollPlayback )
{
/* self->pfds is in effect an array of fds; if necessary, index past the capture fds */
playbackPfds = self->pfds + (pollCapture ? self->capture.nfds : 0);
PaError res = PaAlsaStreamComponent_BeginPolling( &self->playback, playbackPfds );
if( res != paNoError)
{
xrun = 1;
goto end;
}
totalFds += self->playback.nfds;
}
#ifdef PTHREAD_CANCELED
if( self->callbackMode )
{
/* To allow 'Abort' to terminate the callback thread, enable cancelability just for poll() (& disable after) */
pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, NULL );
}
#endif
pollResults = poll( self->pfds, totalFds, pollTimeout );
#ifdef PTHREAD_CANCELED
if( self->callbackMode )
{
pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, NULL );
}
#endif
if( pollResults < 0 )
{
/* XXX: Depend on preprocessor condition? */
if( errno == EINTR )
{
/* gdb */
Pa_Sleep( 1 ); /* avoid hot loop */
continue;
}
/* TODO: Add macro for checking system calls */
PA_ENSURE( paInternalError );
}
else if( pollResults == 0 )
{
/* Suspended, paused or failed device can provide 0 poll results. To avoid deadloop in such situation
* we simply run counter 'timeouts' which detects 0 poll result and accumulates. As soon as 2048 timouts (around 2 seconds)
* are achieved we simply fail function with paTimedOut to notify waiting methods that device is not capable
* of providing audio data anymore and needs some corresponding recovery action.
* Note that 'timeouts' is reset to 0 if poll() managed to return non 0 results.
*/
/*PA_DEBUG(( "%s: poll == 0 results, timed out, %d times left\n", __FUNCTION__, 2048 - timeouts ));*/
++ timeouts;
if( timeouts > 1 ) /* sometimes device times out, but normally once, so we do not sleep any time */
{
Pa_Sleep( 1 ); /* avoid hot loop */
}
/* not else ! */
if( timeouts >= 2048 ) /* audio device not working, shall return error to notify waiters */
{
*framesAvail = 0; /* no frames available for processing */
xrun = 1; /* try recovering device */
PA_DEBUG(( "%s: poll timed out\n", __FUNCTION__, timeouts ));
goto end;/*PA_ENSURE( paTimedOut );*/
}
}
else if( pollResults > 0 )
{
/* reset timouts counter */
timeouts = 0;
/* check the return status of our pfds */
if( pollCapture )
{
PA_ENSURE( PaAlsaStreamComponent_EndPolling( &self->capture, capturePfds, &pollCapture, &xrun ) );
}
if( pollPlayback )
{
PA_ENSURE( PaAlsaStreamComponent_EndPolling( &self->playback, playbackPfds, &pollPlayback, &xrun ) );
}
if( xrun )
{
break;
}
}
/* @concern FullDuplex If only one of two pcms is ready we may want to compromise between the two.
* If there is less than half a period's worth of samples left of frames in the other pcm's buffer we will
* stop polling.
*/
if( self->capture.pcm && self->playback.pcm )
{
if( pollCapture && !pollPlayback )
{
PA_ENSURE( ContinuePoll( self, StreamDirection_In, &pollTimeout, &pollCapture ) );
}
else if( pollPlayback && !pollCapture )
{
PA_ENSURE( ContinuePoll( self, StreamDirection_Out, &pollTimeout, &pollPlayback ) );
}
}
}
if( !xrun )
{
/* Get the number of available frames for the pcms that are marked ready.
* @concern FullDuplex If only one direction is marked ready (from poll), the number of frames available for
* the other direction is returned. Output is normally preferred over capture however, so capture frames may be
* discarded to avoid overrun unless paNeverDropInput is specified.
*/
int captureReady = self->capture.pcm ? self->capture.ready : 0,
playbackReady = self->playback.pcm ? self->playback.ready : 0;
PA_ENSURE( PaAlsaStream_GetAvailableFrames( self, captureReady, playbackReady, framesAvail, &xrun ) );
if( self->capture.pcm && self->playback.pcm )
{
if( !self->playback.ready && !self->neverDropInput )
{
/* Drop input, a period's worth */
assert( self->capture.ready );
PaAlsaStreamComponent_EndProcessing( &self->capture, PA_MIN( self->capture.framesPerPeriod,
*framesAvail ), &xrun );
*framesAvail = 0;
self->capture.ready = 0;
}
}
else if( self->capture.pcm )
assert( self->capture.ready );
else
assert( self->playback.ready );
}
end:
error:
if( xrun )
{
/* Recover from the xrun state */
PA_ENSURE( PaAlsaStream_HandleXrun( self ) );
*framesAvail = 0;
}
else
{
if( 0 != *framesAvail )
{
/* If we're reporting frames eligible for processing, one of the handles better be ready */
PA_UNLESS( self->capture.ready || self->playback.ready, paInternalError );
}
}
*xrunOccurred = xrun;
return result;
}
/** Register per-channel ALSA buffer information with buffer processor.
*
* Mmapped buffer space is acquired from ALSA, and registered with the buffer processor. Differences between the
* number of host and user channels is taken into account.
*
* @param numFrames On entrance the number of requested frames, on exit the number of contiguously accessible frames.
*/
static PaError PaAlsaStreamComponent_RegisterChannels( PaAlsaStreamComponent* self, PaUtilBufferProcessor* bp,
unsigned long* numFrames, int* xrun )
{
PaError result = paNoError;
const snd_pcm_channel_area_t *areas, *area;
void (*setChannel)(PaUtilBufferProcessor *, unsigned int, void *, unsigned int) =
StreamDirection_In == self->streamDir ? PaUtil_SetInputChannel : PaUtil_SetOutputChannel;
unsigned char *buffer, *p;
int i;
unsigned long framesAvail;
/* This _must_ be called before mmap_begin */
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( self, &framesAvail, xrun ) );
if( *xrun )
{
*numFrames = 0;
goto end;
}
if( self->canMmap )
{
ENSURE_( alsa_snd_pcm_mmap_begin( self->pcm, &areas, &self->offset, numFrames ), paUnanticipatedHostError );
/* @concern ChannelAdaption Buffer address is recorded so we can do some channel adaption later */
self->channelAreas = (snd_pcm_channel_area_t *)areas;
}
else
{
unsigned int bufferSize = self->numHostChannels * alsa_snd_pcm_format_size( self->nativeFormat, *numFrames );
if( bufferSize > self->nonMmapBufferSize )
{
self->nonMmapBuffer = realloc( self->nonMmapBuffer, ( self->nonMmapBufferSize = bufferSize ) );
if( !self->nonMmapBuffer )
{
result = paInsufficientMemory;
goto error;
}
}
}
if( self->hostInterleaved )
{
int swidth = alsa_snd_pcm_format_size( self->nativeFormat, 1 );
p = buffer = self->canMmap ? ExtractAddress( areas, self->offset ) : self->nonMmapBuffer;
for( i = 0; i < self->numUserChannels; ++i )
{
/* We're setting the channels up to userChannels, but the stride will be hostChannels samples */
setChannel( bp, i, p, self->numHostChannels );
p += swidth;
}
}
else
{
if( self->canMmap )
{
for( i = 0; i < self->numUserChannels; ++i )
{
area = areas + i;
buffer = ExtractAddress( area, self->offset );
setChannel( bp, i, buffer, 1 );
}
}
else
{
unsigned int buf_per_ch_size = self->nonMmapBufferSize / self->numHostChannels;
buffer = self->nonMmapBuffer;
for( i = 0; i < self->numUserChannels; ++i )
{
setChannel( bp, i, buffer, 1 );
buffer += buf_per_ch_size;
}
}
}
if( !self->canMmap && StreamDirection_In == self->streamDir )
{
/* Read sound */
int res;
if( self->hostInterleaved )
res = alsa_snd_pcm_readi( self->pcm, self->nonMmapBuffer, *numFrames );
else
{
void *bufs[self->numHostChannels];
unsigned int buf_per_ch_size = self->nonMmapBufferSize / self->numHostChannels;
unsigned char *buffer = self->nonMmapBuffer;
int i;
for( i = 0; i < self->numHostChannels; ++i )
{
bufs[i] = buffer;
buffer += buf_per_ch_size;
}
res = alsa_snd_pcm_readn( self->pcm, bufs, *numFrames );
}
if( res == -EPIPE || res == -ESTRPIPE )
{
*xrun = 1;
*numFrames = 0;
}
}
end:
error:
return result;
}
/** Initiate buffer processing.
*
* ALSA buffers are registered with the PA buffer processor and the buffer size (in frames) set.
*
* @concern FullDuplex If both directions are being processed, the minimum amount of frames for the two directions is
* calculated.
*
* @param numFrames On entrance the number of available frames, on exit the number of received frames
* @param xrunOccurred Return whether an xrun has occurred
*/
static PaError PaAlsaStream_SetUpBuffers( PaAlsaStream* self, unsigned long* numFrames, int* xrunOccurred )
{
PaError result = paNoError;
unsigned long captureFrames = ULONG_MAX, playbackFrames = ULONG_MAX, commonFrames = 0;
int xrun = 0;
if( *xrunOccurred )
{
*numFrames = 0;
return result;
}
/* If we got here at least one of the pcm's should be marked ready */
PA_UNLESS( self->capture.ready || self->playback.ready, paInternalError );
/* Extract per-channel ALSA buffer pointers and register them with the buffer processor.
* It is possible that a direction is not marked ready however, because it is out of sync with the other.
*/
if( self->capture.pcm && self->capture.ready )
{
captureFrames = *numFrames;
PA_ENSURE( PaAlsaStreamComponent_RegisterChannels( &self->capture, &self->bufferProcessor, &captureFrames,
&xrun ) );
}
if( self->playback.pcm && self->playback.ready )
{
playbackFrames = *numFrames;
PA_ENSURE( PaAlsaStreamComponent_RegisterChannels( &self->playback, &self->bufferProcessor, &playbackFrames,
&xrun ) );
}
if( xrun )
{
/* Nothing more to do */
assert( 0 == commonFrames );
goto end;
}
commonFrames = PA_MIN( captureFrames, playbackFrames );
/* assert( commonFrames <= *numFrames ); */
if( commonFrames > *numFrames )
{
/* Hmmm ... how come there are more frames available than we requested!? Blah. */
PA_DEBUG(( "%s: Common available frames are reported to be more than number requested: %lu, %lu, callbackMode: %d\n", __FUNCTION__,
commonFrames, *numFrames, self->callbackMode ));
if( self->capture.pcm )
{
PA_DEBUG(( "%s: captureFrames: %lu, capture.ready: %d\n", __FUNCTION__, captureFrames, self->capture.ready ));
}
if( self->playback.pcm )
{
PA_DEBUG(( "%s: playbackFrames: %lu, playback.ready: %d\n", __FUNCTION__, playbackFrames, self->playback.ready ));
}
commonFrames = 0;
goto end;
}
/* Inform PortAudio of the number of frames we got.
* @concern FullDuplex We might be experiencing underflow in either end; if its an input underflow, we go on
* with output. If its output underflow however, depending on the paNeverDropInput flag, we may want to simply
* discard the excess input or call the callback with paOutputOverflow flagged.
*/
if( self->capture.pcm )
{
if( self->capture.ready )
{
PaUtil_SetInputFrameCount( &self->bufferProcessor, commonFrames );
}
else
{
/* We have input underflow */
PaUtil_SetNoInput( &self->bufferProcessor );
}
}
if( self->playback.pcm )
{
if( self->playback.ready )
{
PaUtil_SetOutputFrameCount( &self->bufferProcessor, commonFrames );
}
else
{
/* We have output underflow, but keeping input data (paNeverDropInput) */
assert( self->neverDropInput );
assert( self->capture.pcm != NULL );
PA_DEBUG(( "%s: Setting output buffers to NULL\n", __FUNCTION__ ));
PaUtil_SetNoOutput( &self->bufferProcessor );
}
}
end:
*numFrames = commonFrames;
error:
if( xrun )
{
PA_ENSURE( PaAlsaStream_HandleXrun( self ) );
*numFrames = 0;
}
*xrunOccurred = xrun;
return result;
}
/** Callback thread's function.
*
* Roughly, the workflow can be described in the following way: The number of available frames that can be processed
* directly is obtained from ALSA, we then request as much directly accessible memory as possible within this amount
* from ALSA. The buffer memory is registered with the PA buffer processor and processing is carried out with
* PaUtil_EndBufferProcessing. Finally, the number of processed frames is reported to ALSA. The processing can
* happen in several iterations until we have consumed the known number of available frames (or an xrun is detected).
*/
static void *CallbackThreadFunc( void *userData )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*) userData;
PaStreamCallbackTimeInfo timeInfo = {0, 0, 0};
snd_pcm_sframes_t startThreshold = 0;
int callbackResult = paContinue;
PaStreamCallbackFlags cbFlags = 0; /* We might want to keep state across iterations */
int streamStarted = 0;
assert( stream );
/* Not implemented */
assert( !stream->primeBuffers );
/* Execute OnExit when exiting */
pthread_cleanup_push( &OnExit, stream );
#ifdef PTHREAD_CANCELED
/* 'Abort' will use thread cancellation to terminate the callback thread, but the Alsa-lib functions
* are NOT cancel-safe, (and can end up in an inconsistent state). So, disable cancelability for
* the thread here, and just re-enable it for the poll() in PaAlsaStream_WaitForFrames(). */
pthread_testcancel();
pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, NULL );
#endif
/* @concern StreamStart If the output is being primed the output pcm needs to be prepared, otherwise the
* stream is started immediately. The latter involves signaling the waiting main thread.
*/
if( stream->primeBuffers )
{
snd_pcm_sframes_t avail;
if( stream->playback.pcm )
ENSURE_( alsa_snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
if( stream->capture.pcm && !stream->pcmsSynced )
ENSURE_( alsa_snd_pcm_prepare( stream->capture.pcm ), paUnanticipatedHostError );
/* We can't be certain that the whole ring buffer is available for priming, but there should be
* at least one period */
avail = alsa_snd_pcm_avail_update( stream->playback.pcm );
startThreshold = avail - (avail % stream->playback.framesPerPeriod);
assert( startThreshold >= stream->playback.framesPerPeriod );
}
else
{
PA_ENSURE( PaUnixThread_PrepareNotify( &stream->thread ) );
/* Buffer will be zeroed */
PA_ENSURE( AlsaStart( stream, 0 ) );
PA_ENSURE( PaUnixThread_NotifyParent( &stream->thread ) );
streamStarted = 1;
}
while( 1 )
{
unsigned long framesAvail, framesGot;
int xrun = 0;
#ifdef PTHREAD_CANCELED
pthread_testcancel();
#endif
/* @concern StreamStop if the main thread has requested a stop and the stream has not been effectively
* stopped we signal this condition by modifying callbackResult (we'll want to flush buffered output).
*/
if( PaUnixThread_StopRequested( &stream->thread ) && paContinue == callbackResult )
{
PA_DEBUG(( "Setting callbackResult to paComplete\n" ));
callbackResult = paComplete;
}
if( paContinue != callbackResult )
{
stream->callbackAbort = ( paAbort == callbackResult );
if( stream->callbackAbort ||
/** @concern BlockAdaption: Go on if adaption buffers are empty */
PaUtil_IsBufferProcessorOutputEmpty( &stream->bufferProcessor ) )
{
goto end;
}
PA_DEBUG(( "%s: Flushing buffer processor\n", __FUNCTION__ ));
/* There is still buffered output that needs to be processed */
}
/* Wait for data to become available, this comes down to polling the ALSA file descriptors until we have
* a number of available frames.
*/
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
if( xrun )
{
assert( 0 == framesAvail );
continue;
/* XXX: Report xruns to the user? A situation is conceivable where the callback is never invoked due
* to constant xruns, it might be desirable to notify the user of this.
*/
}
/* Consume buffer space. Once we have a number of frames available for consumption we must retrieve the
* mmapped buffers from ALSA, this is contiguously accessible memory however, so we may receive smaller
* portions at a time than is available as a whole. Therefore we should be prepared to process several
* chunks successively. The buffers are passed to the PA buffer processor.
*/
while( framesAvail > 0 )
{
xrun = 0;
/** @concern Xruns Under/overflows are to be reported to the callback */
if( stream->underrun > 0.0 )
{
cbFlags |= paOutputUnderflow;
stream->underrun = 0.0;
}
if( stream->overrun > 0.0 )
{
cbFlags |= paInputOverflow;
stream->overrun = 0.0;
}
if( stream->capture.pcm && stream->playback.pcm )
{
/** @concern FullDuplex It's possible that only one direction is being processed to avoid an
* under- or overflow, this should be reported correspondingly */
if( !stream->capture.ready )
{
cbFlags |= paInputUnderflow;
PA_DEBUG(( "%s: Input underflow\n", __FUNCTION__ ));
}
else if( !stream->playback.ready )
{
cbFlags |= paOutputOverflow;
PA_DEBUG(( "%s: Output overflow\n", __FUNCTION__ ));
}
}
#if 0
CallbackUpdate( &stream->threading );
#endif
CalculateTimeInfo( stream, &timeInfo );
PaUtil_BeginBufferProcessing( &stream->bufferProcessor, &timeInfo, cbFlags );
cbFlags = 0;
/* CPU load measurement should include processing activity external to the stream callback */
PaUtil_BeginCpuLoadMeasurement( &stream->cpuLoadMeasurer );
framesGot = framesAvail;
if( paUtilFixedHostBufferSize == stream->bufferProcessor.hostBufferSizeMode )
{
/* We've committed to a fixed host buffer size, stick to that */
framesGot = framesGot >= stream->maxFramesPerHostBuffer ? stream->maxFramesPerHostBuffer : 0;
}
else
{
/* We've committed to an upper bound on the size of host buffers */
assert( paUtilBoundedHostBufferSize == stream->bufferProcessor.hostBufferSizeMode );
framesGot = PA_MIN( framesGot, stream->maxFramesPerHostBuffer );
}
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
/* Check the host buffer size against the buffer processor configuration */
framesAvail -= framesGot;
if( framesGot > 0 )
{
assert( !xrun );
PaUtil_EndBufferProcessing( &stream->bufferProcessor, &callbackResult );
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
}
PaUtil_EndCpuLoadMeasurement( &stream->cpuLoadMeasurer, framesGot );
if( 0 == framesGot )
{
/* Go back to polling for more frames */
break;
}
if( paContinue != callbackResult )
break;
}
}
end:
; /* Hack to fix "label at end of compound statement" error caused by pthread_cleanup_pop(1) macro. */
/* Match pthread_cleanup_push */
pthread_cleanup_pop( 1 );
PA_DEBUG(( "%s: Thread %d exiting\n ", __FUNCTION__, pthread_self() ));
PaUnixThreading_EXIT( result );
error:
PA_DEBUG(( "%s: Thread %d is canceled due to error %d\n ", __FUNCTION__, pthread_self(), result ));
goto end;
}
/* Blocking interface */
static PaError ReadStream( PaStream* s, void *buffer, unsigned long frames )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
unsigned long framesGot, framesAvail;
void *userBuffer;
snd_pcm_t *save = stream->playback.pcm;
assert( stream );
PA_UNLESS( stream->capture.pcm, paCanNotReadFromAnOutputOnlyStream );
/* Disregard playback */
stream->playback.pcm = NULL;
if( stream->overrun > 0. )
{
result = paInputOverflowed;
stream->overrun = 0.0;
}
if( stream->capture.userInterleaved )
{
userBuffer = buffer;
}
else
{
/* Copy channels into local array */
userBuffer = stream->capture.userBuffers;
memcpy( userBuffer, buffer, sizeof (void *) * stream->capture.numUserChannels );
}
/* Start stream if in prepared state */
if( alsa_snd_pcm_state( stream->capture.pcm ) == SND_PCM_STATE_PREPARED )
{
ENSURE_( alsa_snd_pcm_start( stream->capture.pcm ), paUnanticipatedHostError );
}
while( frames > 0 )
{
int xrun = 0;
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
framesGot = PA_MIN( framesAvail, frames );
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
if( framesGot > 0 )
{
framesGot = PaUtil_CopyInput( &stream->bufferProcessor, &userBuffer, framesGot );
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
frames -= framesGot;
}
}
end:
stream->playback.pcm = save;
return result;
error:
goto end;
}
static PaError WriteStream( PaStream* s, const void *buffer, unsigned long frames )
{
PaError result = paNoError;
signed long err;
PaAlsaStream *stream = (PaAlsaStream*)s;
snd_pcm_uframes_t framesGot, framesAvail;
const void *userBuffer;
snd_pcm_t *save = stream->capture.pcm;
assert( stream );
PA_UNLESS( stream->playback.pcm, paCanNotWriteToAnInputOnlyStream );
/* Disregard capture */
stream->capture.pcm = NULL;
if( stream->underrun > 0. )
{
result = paOutputUnderflowed;
stream->underrun = 0.0;
}
if( stream->playback.userInterleaved )
userBuffer = buffer;
else /* Copy channels into local array */
{
userBuffer = stream->playback.userBuffers;
memcpy( (void *)userBuffer, buffer, sizeof (void *) * stream->playback.numUserChannels );
}
while( frames > 0 )
{
int xrun = 0;
snd_pcm_uframes_t hwAvail;
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
framesGot = PA_MIN( framesAvail, frames );
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
if( framesGot > 0 )
{
framesGot = PaUtil_CopyOutput( &stream->bufferProcessor, &userBuffer, framesGot );
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
frames -= framesGot;
}
/* Start stream after one period of samples worth */
/* Frames residing in buffer */
PA_ENSURE( err = GetStreamWriteAvailable( stream ) );
framesAvail = err;
hwAvail = stream->playback.alsaBufferSize - framesAvail;
if( alsa_snd_pcm_state( stream->playback.pcm ) == SND_PCM_STATE_PREPARED &&
hwAvail >= stream->playback.framesPerPeriod )
{
ENSURE_( alsa_snd_pcm_start( stream->playback.pcm ), paUnanticipatedHostError );
}
}
end:
stream->capture.pcm = save;
return result;
error:
goto end;
}
/* Return frames available for reading. In the event of an overflow, the capture pcm will be restarted */
static signed long GetStreamReadAvailable( PaStream* s )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
unsigned long avail;
int xrun;
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->capture, &avail, &xrun ) );
if( xrun )
{
PA_ENSURE( PaAlsaStream_HandleXrun( stream ) );
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->capture, &avail, &xrun ) );
if( xrun )
PA_ENSURE( paInputOverflowed );
}
return (signed long)avail;
error:
return result;
}
static signed long GetStreamWriteAvailable( PaStream* s )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
unsigned long avail;
int xrun;
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->playback, &avail, &xrun ) );
if( xrun )
{
snd_pcm_sframes_t savail;
PA_ENSURE( PaAlsaStream_HandleXrun( stream ) );
savail = alsa_snd_pcm_avail_update( stream->playback.pcm );
/* savail should not contain -EPIPE now, since PaAlsaStream_HandleXrun will only prepare the pcm */
ENSURE_( savail, paUnanticipatedHostError );
avail = (unsigned long) savail;
}
return (signed long)avail;
error:
return result;
}
/* Extensions */
void PaAlsa_InitializeStreamInfo( PaAlsaStreamInfo *info )
{
info->size = sizeof (PaAlsaStreamInfo);
info->hostApiType = paALSA;
info->version = 1;
info->deviceString = NULL;
}
void PaAlsa_EnableRealtimeScheduling( PaStream *s, int enable )
{
PaAlsaStream *stream = (PaAlsaStream *) s;
stream->rtSched = enable;
}
#if 0
void PaAlsa_EnableWatchdog( PaStream *s, int enable )
{
PaAlsaStream *stream = (PaAlsaStream *) s;
stream->thread.useWatchdog = enable;
}
#endif
static PaError GetAlsaStreamPointer( PaStream* s, PaAlsaStream** stream )
{
PaError result = paNoError;
PaUtilHostApiRepresentation* hostApi;
PaAlsaHostApiRepresentation* alsaHostApi;
PA_ENSURE( PaUtil_ValidateStreamPointer( s ) );
PA_ENSURE( PaUtil_GetHostApiRepresentation( &hostApi, paALSA ) );
alsaHostApi = (PaAlsaHostApiRepresentation*)hostApi;
PA_UNLESS( PA_STREAM_REP( s )->streamInterface == &alsaHostApi->callbackStreamInterface
|| PA_STREAM_REP( s )->streamInterface == &alsaHostApi->blockingStreamInterface,
paIncompatibleStreamHostApi );
*stream = (PaAlsaStream*)s;
error:
return paNoError;
}
PaError PaAlsa_GetStreamInputCard( PaStream* s, int* card )
{
PaAlsaStream *stream;
PaError result = paNoError;
snd_pcm_info_t* pcmInfo;
PA_ENSURE( GetAlsaStreamPointer( s, &stream ) );
/* XXX: More descriptive error? */
PA_UNLESS( stream->capture.pcm, paDeviceUnavailable );
alsa_snd_pcm_info_alloca( &pcmInfo );
PA_ENSURE( alsa_snd_pcm_info( stream->capture.pcm, pcmInfo ) );
*card = alsa_snd_pcm_info_get_card( pcmInfo );
error:
return result;
}
PaError PaAlsa_GetStreamOutputCard( PaStream* s, int* card )
{
PaAlsaStream *stream;
PaError result = paNoError;
snd_pcm_info_t* pcmInfo;
PA_ENSURE( GetAlsaStreamPointer( s, &stream ) );
/* XXX: More descriptive error? */
PA_UNLESS( stream->playback.pcm, paDeviceUnavailable );
alsa_snd_pcm_info_alloca( &pcmInfo );
PA_ENSURE( alsa_snd_pcm_info( stream->playback.pcm, pcmInfo ) );
*card = alsa_snd_pcm_info_get_card( pcmInfo );
error:
return result;
}
PaError PaAlsa_SetRetriesBusy( int retries )
{
busyRetries_ = retries;
return paNoError;
}