Spaces:
Runtime error
Runtime error
alvi15tooba
commited on
Commit
•
ddd21bb
1
Parent(s):
57b7cd3
Upload folder using huggingface_hub
Browse files- README.md +2 -8
- TAA_load_data_hackathon .ipynb +0 -0
- app.py +106 -0
- data.pkl +3 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.21.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: gradio-app
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 4.21.0
|
|
|
|
|
6 |
---
|
|
|
|
TAA_load_data_hackathon .ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title =("<center>"
|
2 |
+
"<p>""Welcome to Hotel Recommendation System!""</p>"
|
3 |
+
"</center>")
|
4 |
+
|
5 |
+
head = (
|
6 |
+
"<center>"
|
7 |
+
"<img src='https://img.freepik.com/free-vector/hotel-tower-concept-illustration_114360-12962.jpg?w=740&t=st=1710571774~exp=1710572374~hmac=6daf26dbfb918ba737df6d2f091351ab0348437afeff121f973efd2d55bfe092' width=400>"
|
8 |
+
"The robot was trained to search for relevant hotels from the dataset provided."
|
9 |
+
"</center>"
|
10 |
+
)
|
11 |
+
|
12 |
+
#importing libraries
|
13 |
+
import requests
|
14 |
+
import os
|
15 |
+
import gradio as gr
|
16 |
+
import pandas as pd
|
17 |
+
import pprint
|
18 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
19 |
+
from openai.embeddings_utils import get_embedding, cosine_similarity
|
20 |
+
df = pd.read_pickle('data.pkl')
|
21 |
+
embedder = SentenceTransformer('all-mpnet-base-v2')
|
22 |
+
def search(query,pprint=True):
|
23 |
+
n = 15
|
24 |
+
query_embedding = embedder.encode(query,show_progress_bar=True) #encode the query
|
25 |
+
df["rev_sim_score"] = df.embed_1.apply(lambda x: cosine_similarity(x, query_embedding.reshape(768,-1))) #similarity against each doc
|
26 |
+
review_results = (
|
27 |
+
df.sort_values("rev_sim_score", ascending=False) # re-rank
|
28 |
+
.head(n))
|
29 |
+
resultlist = []
|
30 |
+
hlist = []
|
31 |
+
for r in review_results.index:
|
32 |
+
if review_results.hotel_name[r] not in hlist:
|
33 |
+
smalldf = review_results.loc[review_results.hotel_name == review_results.hotel_name[r]]
|
34 |
+
smallarr = smalldf.rev_sim_score[r].max()
|
35 |
+
sm =smalldf.rate[r].mean()
|
36 |
+
if smalldf.shape[1] > 3:
|
37 |
+
smalldf = smalldf[:3]
|
38 |
+
resultlist.append(
|
39 |
+
{
|
40 |
+
"hotel_name":review_results.hotel_name[r],
|
41 |
+
"description":review_results.hotel_description[r],
|
42 |
+
"relevance score": smallarr.tolist(),
|
43 |
+
"rating": sm.tolist(),
|
44 |
+
"relevant_reviews": [ smalldf.hotel_info[s] for s in smalldf.index]
|
45 |
+
})
|
46 |
+
hlist.append(review_results.hotel_name[r])
|
47 |
+
return resultlist
|
48 |
+
|
49 |
+
def hotel_info(query, pprint=True):
|
50 |
+
query_embedding = embedder.encode(query,show_progress_bar=True) #encode the query
|
51 |
+
df["hotel_sim_score"] = df.embed_2.apply(lambda x: cosine_similarity(x, query_embedding.reshape(768,-1)))
|
52 |
+
#similarity against each doc
|
53 |
+
n=3
|
54 |
+
hotel_results = (
|
55 |
+
df.sort_values("hotel_sim_score", ascending=False) # re-rank
|
56 |
+
.head(n))
|
57 |
+
resultlist = []
|
58 |
+
hlist = []
|
59 |
+
for r in hotel_results.index:
|
60 |
+
if hotel_results.hotel_name[r] not in hlist:
|
61 |
+
smalldf = hotel_results.loc[hotel_results.hotel_name == hotel_results.hotel_name[r]]
|
62 |
+
smallarr = smalldf.hotel_sim_score[r].max()
|
63 |
+
sm =smalldf.rate[r].mean()
|
64 |
+
if smalldf.shape[1] > 3:
|
65 |
+
smalldf = smalldf[:3]
|
66 |
+
resultlist.append(
|
67 |
+
{
|
68 |
+
"name":hotel_results.hotel_name[r],
|
69 |
+
"description":hotel_results.hotel_description[r],
|
70 |
+
"hotel_picture":hotel_results.hotel_image[r],
|
71 |
+
"relevance score": smallarr.tolist(),
|
72 |
+
|
73 |
+
})
|
74 |
+
|
75 |
+
return resultlist
|
76 |
+
def search_ares(query):
|
77 |
+
x_api_key="ares_e77b47e2754d39b9989a83584d6c528a1980e42ea1f4827eb2584d5b4ee30ccc"
|
78 |
+
url = "https://api-ares.traversaal.ai/live/predict"
|
79 |
+
payload = {"query": [query]}
|
80 |
+
headers = {
|
81 |
+
"x-api-key": x_api_key,
|
82 |
+
"content-type": "application/json"}
|
83 |
+
response = requests.post(url, json=payload, headers=headers)
|
84 |
+
content = response.json()
|
85 |
+
return content
|
86 |
+
|
87 |
+
|
88 |
+
def greet(name):
|
89 |
+
print("Hi! I am your AI assistant.Please let me know your name please.. ")
|
90 |
+
return "Hi " + name + "!"
|
91 |
+
|
92 |
+
#hotel_details = hotel_info(query)
|
93 |
+
#hotel_reviews = search(query)
|
94 |
+
#return hotel_details,hotel_reviews
|
95 |
+
|
96 |
+
blocks = gr.Blocks()
|
97 |
+
with blocks as demo:
|
98 |
+
|
99 |
+
greet = gr.Interface(fn=greet, inputs="textbox",title=title, description=head, outputs="textbox")
|
100 |
+
hotel_info= gr.Interface(fn=hotel_info, inputs="text",outputs=[gr.components.Textbox(lines=3, label="Write query to search about hotel info")])
|
101 |
+
search = gr.Interface(fn=search, inputs="text", outputs=[gr.components.Textbox(lines=3, label="Write query to search about hotel reviews")])
|
102 |
+
search_ares= gr.Interface(fn=search_ares, inputs="textbox", outputs=[gr.components.Textbox(lines=3, label="Write query to search using Ares API")])
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
demo.launch(share=True,debug=True)
|
data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98f0d222e8fcef69188ed5b58c9e257789378546ffc90b78169a81d7f3bb8601
|
3 |
+
size 51660046
|