Spaces:
Running
Running
import os | |
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import HuggingFaceBgeEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from htmlTemplates import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub | |
from deep_translator import GoogleTranslator | |
import pandas as pd | |
from langchain_groq import ChatGroq | |
from openai import OpenAI | |
# set this key as an environment variable | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['Key2'] | |
########################################################################################### | |
def get_pdf_text(pdf_docs : list) -> str: | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
####################################################################################### | |
def load_file(): | |
loader = TextLoader('d2.txt') | |
documents = loader.load() | |
return documents | |
######################################################################################## | |
def get_text_chunks(text:str) ->list: | |
text_splitter = CharacterTextSplitter( | |
separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks : list) -> FAISS: | |
#model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | |
model="paraphrase-distilroberta-base-v1" | |
encode_kwargs = { | |
"normalize_embeddings": True | |
} # set True to compute cosine similarity | |
embeddings = HuggingFaceBgeEmbeddings( | |
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} | |
) | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore: FAISS) -> ConversationalRetrievalChain: | |
client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio") | |
llm = client.chat.completions.create( | |
model="lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF", | |
messages=[ | |
{"role": "system", "content": "Always answer in rhymes."}, | |
{"role": "user", "content": "Introduce yourself."} | |
], | |
temperature=0.5, | |
) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, retriever=vectorstore.as_retriever(), memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question:str): | |
response = st.session_state.conversation({"question": user_question}) | |
st.session_state.chat_history = response["chat_history"] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
text2=message.content | |
translator = GoogleTranslator(source='english', target='persian') | |
result = translator.translate(text2) | |
st.write("سوال کاربر: "+result) | |
else: | |
text1=message.content | |
translator = GoogleTranslator(source='english', target='persian') | |
result = translator.translate(text1) | |
st.write("پاسخ ربات: "+result) | |
############################################################################################################# | |
def read_pdf_pr_en(pdf_file_path): | |
from deep_translator import GoogleTranslator | |
import PyPDF2 | |
# مسیر فایل PDF را تعیین کنید | |
#pdf_file_path = '/content/d2en.pdf' | |
# باز کردن فایل PDF | |
with open(pdf_file_path, 'rb') as pdf_file: | |
pdf_reader = PyPDF2.PdfReader(pdf_file) | |
# خواندن محتوای صفحهها | |
full_text = '' | |
for page in pdf_reader.pages: | |
page_pdf=page.extract_text() | |
translator = GoogleTranslator(source='persian', target='english') | |
result = translator.translate(page_pdf) | |
full_text +=result | |
st.write(full_text) | |
return(full_text) | |
################################################################################################################# | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
txt_page=page.extract_text() | |
text += txt_page | |
return text | |
####################################################################################################################### | |
def upload_xls(): | |
st.title("آپلود و نمایش فایل اکسل") | |
uploaded_file = st.file_uploader("لطفاً فایل اکسل خود را آپلود کنید", type=["xlsx", "xls"]) | |
if uploaded_file is not None: | |
df = pd.read_excel(uploaded_file) | |
st.write("دیتا فریم مربوط به فایل اکسل:") | |
st.write(df) | |
return df | |
################################################################################################################ | |
def sentences_f(sentence,df2): | |
words = sentence.split() | |
df1 = pd.DataFrame(words, columns=['کلمات']) | |
df1['معادل'] = '' | |
for i, word in df1['کلمات'].items(): | |
match = df2[df2['کلمات'] == word] | |
if not match.empty: | |
df1.at[i, 'معادل'] = match['معادل'].values[0] | |
df1['معادل'] = df1.apply(lambda row: row['کلمات'] if row['معادل'] == '' else row['معادل'], axis=1) | |
translated_sentence = ' '.join(df1['معادل'].tolist()) | |
return translated_sentence | |
#################################################################################################################### | |
#################################################################################################################### | |
def main(): | |
st.set_page_config( | |
page_title="Chat Bot PDFs", | |
page_icon=":books:", | |
) | |
#st.markdown("# Chat with a Bot") | |
#st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾") | |
st.write(css, unsafe_allow_html=True) | |
#df2=upload_xls() | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat Bot PDFs :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
#user_question2=sentences_f(sentence=user_question1,df2=df2) | |
#translator = GoogleTranslator(source='persian', target='english') | |
#user_question = translator.translate(user_question2) | |
if st.button("Answer"): | |
with st.spinner("Answering"): | |
handle_userinput(user_question) | |
if st.button("CLEAR"): | |
with st.spinner("CLEARING"): | |
st.cache_data.clear() | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
#compelete build model | |
st.write("compelete build model") | |
if __name__ == "__main__": | |
main() | |