Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,861 Bytes
7c1afaf 87eb439 fa661af 7c1afaf 8b530ad 31b9227 7c1afaf 31b9227 7c1afaf 31b9227 7c1afaf 87eb439 0ee3851 87eb439 0ee3851 7c1afaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# Ref: https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b
import spaces
import gradio as gr
import os
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch
HF_TOKEN=os.environ["TOKEN"]
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">้ๅ
ฌๅผGemma-2-2b-jpn-it</h1>
<p>Gemma-2-2b-jpn-itใฎ้ๅ
ฌๅผใใขใ ใใ <a href="https://huggingface.co/google/gemma-2-2b-jpn-it"><b>google/gemma-2-2b-jpn-it</b></a>.</p>
</div>
'''
LICENSE = """
<p/>
---
Gemma
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Gemma-2-2b-jpn-it</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ใชใใงใใใใฆใญ</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-jpn-it",token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-2b-jpn-it",
device_map="auto",
torch_dtype=torch.bfloat16,
token=HF_TOKEN
)
@spaces.GPU()
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True,return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="โ๏ธ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.7,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False ),
],
examples=[
['ๅฐๅญฆ็ใซใใใใใใใซ็ธๅฏพๆง็่ซใๆใใฆใใ ใใใ'],
['ๅฎๅฎใฎ่ตทๆบใ็ฅใใใใฎๆนๆณใในใใใใปใใคใปในใใใใงๆใใฆใใ ใใใ'],
['1ใใ100ใพใงใฎ็ด ๆฐใๆฑใใในใฏใชใใใPythonใงๆธใใฆใใ ใใใ'],
['ๅ้ใฎ้ฝ่ตใซใใใ่ช็ๆฅใใฌใผใณใใ่ใใฆใใ ใใใใใ ใใ้ฝ่ตใฏไธญๅญฆ็ใงใ็งใฏๅใใฏใฉในใฎ็ทๆงใงใใใใจใ่ๆ
ฎใใฆใใ ใใใ'],
['ใใณใฎใณใใธใฃใณใฐใซใฎ็ๆงใงใใใใจใๆญฃๅฝๅใใใใใซ่ชฌๆใใฆใใ ใใใ']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
|