import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from huggingface_hub import InferenceClient import os import torch # Environment variable for HF token hf_token = os.environ.get("HF_TOKEN") # Your model ID model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" # quantization_config = BitsAndBytesConfig( # load_in_4bit=True, # bnb_4bit_quant_type="nf4", # bnb_4bit_compute_dtype=torch.float16 # ) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=hf_token) tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True ) formatted_prompt = format_prompt(prompt, history) messages = [ {"role": "user", "content": f"[INST] {prompt} [/INST]"} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt") stream = model.generate(inputs, **generate_kwargs) output = "" decoded = tokenizer.batch_decode(stream) print(decoded[0]) return decoded[0] additional_inputs=[ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.HTML("

Mistral 7B Instruct

") gr.HTML("

In this demo, you can chat with Mistral-7B-Instruct model. 💬

") gr.HTML("

Learn more about the model here. 📚

") gr.ChatInterface( generate, additional_inputs=additional_inputs, examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]] ) demo.queue(concurrency_limit=75, max_size=100).launch(debug=True)