mistral-lynk / app.py
alfonsovelp's picture
Update app.py
7af3211 verified
raw
history blame
3.33 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from huggingface_hub import InferenceClient
import os
import torch
# Environment variable for HF token
hf_token = os.environ.get("HF_TOKEN")
# Your model ID
model_id = "models/mistralai/Mixtral-8x7B-Instruct-v0.1"
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch.float16
# )
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True
)
formatted_prompt = format_prompt(prompt, history)
messages = [
{"role": "user", "content": f"[INST] {prompt} [/INST]"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
stream = model.generate(inputs, **generate_kwargs)
output = ""
decoded = tokenizer.batch_decode(stream)
print(decoded[0])
return decoded[0]
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. πŸ’¬<h3><center>")
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. πŸ“š<h3><center>")
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
)
demo.queue(concurrency_limit=75, max_size=100).launch(debug=True)