Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os, sys, json
|
3 |
+
import gradio as gr
|
4 |
+
import time
|
5 |
+
import re
|
6 |
+
import io
|
7 |
+
#from PIL import Image, ImageDraw, ImageOps, ImageFont
|
8 |
+
#import base64
|
9 |
+
import tempfile
|
10 |
+
import asyncio
|
11 |
+
from concurrent.futures import ThreadPoolExecutor
|
12 |
+
|
13 |
+
from PyPDF2 import PdfReader, PdfWriter
|
14 |
+
|
15 |
+
|
16 |
+
#from langchain.chains import LLMChain, RetrievalQA
|
17 |
+
from langchain_community.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader, DirectoryLoader
|
18 |
+
from langchain_community.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
|
19 |
+
#from langchain.document_loaders import GenericLoader
|
20 |
+
#from langchain.schema import AIMessage, HumanMessage
|
21 |
+
#from langchain_community.llms import HuggingFaceHub
|
22 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
23 |
+
#from langchain_community.llms import HuggingFaceEndPoints
|
24 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
25 |
+
#from langchain_community.llms import HuggingFaceTextGenInference
|
26 |
+
#from langchain_community.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
27 |
+
#from langchain.prompts import PromptTemplate
|
28 |
+
#from langchain.chains import Runnable.................................
|
29 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
30 |
+
from langchain_community.vectorstores import Chroma
|
31 |
+
from chromadb.errors import InvalidDimensionException
|
32 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
33 |
+
from transformers import pipeline
|
34 |
+
from huggingface_hub import InferenceApi
|
35 |
+
from utils import *
|
36 |
+
from beschreibungen import *
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
#Konstanten
|
41 |
+
#Validieren des PW
|
42 |
+
ANTI_BOT_PW = os.getenv("VALIDATE_PW")
|
43 |
+
|
44 |
+
###############################
|
45 |
+
#HF Authentifizierung
|
46 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HF_READ")
|
47 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
|
48 |
+
HEADERS = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
49 |
+
# Hugging Face Token direkt im Code setzen
|
50 |
+
hf_token = os.getenv("HF_READ")
|
51 |
+
|
52 |
+
|
53 |
+
#max Anzahl der zurückgelieferten Dokumente
|
54 |
+
ANZAHL_DOCS = 5
|
55 |
+
PATH_WORK = "."
|
56 |
+
CHROMA_DIR = "/chroma/kkg"
|
57 |
+
CHROMA_PDF = './chroma/kkg/pdf'
|
58 |
+
CHROMA_WORD = './chroma/kkg/word'
|
59 |
+
CHROMA_EXCEL = './chroma/kkg/excel'
|
60 |
+
DOCS_DIR = "chroma/kkg"
|
61 |
+
|
62 |
+
###########################################
|
63 |
+
# Alternativen, um HF Modelle in der rAG Chain einzusetzen
|
64 |
+
###########################################
|
65 |
+
#######################################
|
66 |
+
#1. Alternative: HuggingFace Model name--------------------------------
|
67 |
+
#MODEL_NAME_HF = "HuggingFaceH4/zephyr-7b-alpha" #"t5-small" #"meta-llama/Meta-Llama-3-8B-Instruct" #"mistralai/Mistral-7B-Instruct-v0.3" #"microsoft/Phi-3-mini-4k-instruct" #"HuggingFaceH4/zephyr-7b-alpha"
|
68 |
+
|
69 |
+
############################################
|
70 |
+
#2. Alternative_ HuggingFace Reop ID--------------------------------
|
71 |
+
#repo_id = "meta-llama/Llama-2-13b-chat-hf"
|
72 |
+
#repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
|
73 |
+
#repo_id = "TheBloke/Yi-34B-Chat-GGUF"
|
74 |
+
#repo_id = "meta-llama/Llama-2-70b-chat-hf"
|
75 |
+
#repo_id = "tiiuae/falcon-40b"
|
76 |
+
#repo_id = "Vicuna-33b"
|
77 |
+
#repo_id = "alexkueck/ChatBotLI2Klein"
|
78 |
+
#repo_id = "mistralai/Mistral-7B-v0.1"
|
79 |
+
#repo_id = "internlm/internlm-chat-7b"
|
80 |
+
#repo_id = "Qwen/Qwen-7B"
|
81 |
+
#repo_id = "Salesforce/xgen-7b-8k-base"
|
82 |
+
#repo_id = "Writer/camel-5b-hf"
|
83 |
+
#repo_id = "databricks/dolly-v2-3b"
|
84 |
+
#repo_id = "google/flan-t5-xxl"
|
85 |
+
#repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
86 |
+
#repo_id = "abacusai/Smaug-72B-v0.1"
|
87 |
+
|
88 |
+
###########################################
|
89 |
+
#3. Alternative: HF API - URL
|
90 |
+
#API_URL = "https://api-inference.huggingface.co/models/Falconsai/text_summarization"
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
###############################################
|
96 |
+
#globale Variablen
|
97 |
+
##############################################
|
98 |
+
#Filepath zu temp Folder (temp) mit File von ausgewähltem chatverlauf
|
99 |
+
file_path_download = ""
|
100 |
+
|
101 |
+
################################################
|
102 |
+
# Erstellen des Vektorstores
|
103 |
+
################################################
|
104 |
+
def create_vectorstore():
|
105 |
+
global vektordatenbank, SPLIT_TO_ORIGINAL_MAPPING, ORIGINAL_SPLITS, PREPROCESSED_SPLITS
|
106 |
+
# Splits zu allen Dokumenten in den Verzeichnissen erstellen
|
107 |
+
PREPROCESSED_SPLITS, SPLIT_TO_ORIGINAL_MAPPING, ORIGINAL_SPLITS = document_loading_splitting()
|
108 |
+
if PREPROCESSED_SPLITS:
|
109 |
+
print("Vektordatenbank neu .....................")
|
110 |
+
# Vektordatenbank zu den Splits erstellen
|
111 |
+
vektordatenbank = document_storage_chroma(PREPROCESSED_SPLITS)
|
112 |
+
# Speichern der Splits und Metadaten
|
113 |
+
save_splits(PREPROCESSED_SPLITS, ORIGINAL_SPLITS)
|
114 |
+
save_split_to_original_mapping(SPLIT_TO_ORIGINAL_MAPPING)
|
115 |
+
|
116 |
+
#falls Vektorstore vorhanden: neu laden!!!!!!!!!!!!!!!!!
|
117 |
+
def load_vectorstore_and_mapping():
|
118 |
+
global vektordatenbank, SPLIT_TO_ORIGINAL_MAPPING, ORIGINAL_SPLITS, PREPROCESSED_SPLITS
|
119 |
+
preprocessed_splits, original_splits = load_splits()
|
120 |
+
mapping = load_split_to_original_mapping()
|
121 |
+
if preprocessed_splits is not None and original_splits is not None and mapping is not None:
|
122 |
+
# Vektordatenbank zu den Splits erstellen
|
123 |
+
vektordatenbank = document_storage_chroma(preprocessed_splits)
|
124 |
+
SPLIT_TO_ORIGINAL_MAPPING = mapping
|
125 |
+
ORIGINAL_SPLITS = original_splits
|
126 |
+
PREPROCESSED_SPLITS = preprocessed_splits
|
127 |
+
else:
|
128 |
+
#fehler beim laden -> Vektorstore neu zusammensetzen
|
129 |
+
create_vectorstore()
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
###########################################
|
134 |
+
# Beim Start der Anwendung - Vektorstore laden!!!!
|
135 |
+
###########################################
|
136 |
+
print("Vektorstore laden.........................")
|
137 |
+
#die Variablen: vektordatenbank, PREPROCESSED_SPLITS, ORGINAL_SPLITS und das Mapping werden neu gesetzt global!!!!
|
138 |
+
load_vectorstore_and_mapping()
|
139 |
+
|
140 |
+
|
141 |
+
#################################################
|
142 |
+
#################################################
|
143 |
+
#Funktionen zur Verarbeitung
|
144 |
+
################################################
|
145 |
+
|
146 |
+
##############################################
|
147 |
+
#wenn löschen Button geklickt
|
148 |
+
def clear_all(history, uploaded_file_paths, chats):
|
149 |
+
dic_history = {schluessel: wert for schluessel, wert in history}
|
150 |
+
#später wird die summary auf 50 tokens verkürzt, um die Anfrage nicht so teuer werden zu lassen
|
151 |
+
#summary wird gebraucht für die Anfrage beim NN, um eine Überschrift des Eintrages zu generieren
|
152 |
+
summary = "\n\n".join(f'{schluessel}: \n {wert}' for schluessel, wert in dic_history.items())
|
153 |
+
|
154 |
+
#falls file mit summay für download existiert hat: das zunächst löschen
|
155 |
+
#cleanup(file_path_download)
|
156 |
+
#noch nicht im Einsatz, aber hier werden alle Chats einer Sitzung gespeichert
|
157 |
+
#den aktuellen Chatverlauf zum Download bereitstellen:
|
158 |
+
if chats != {} :
|
159 |
+
id_neu = len(chats)+1
|
160 |
+
chats[id_neu]= summary
|
161 |
+
else:
|
162 |
+
chats[0]= summary
|
163 |
+
|
164 |
+
#Eine Überschrift zu dem jeweiligen Chatverlauf finden - abhängig vom Inhalt
|
165 |
+
#file_path_download = save_and_download(summary)
|
166 |
+
#headers, payload = process_chatverlauf(summary, MODEL_NAME, OAI_API_KEY)
|
167 |
+
#response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
168 |
+
#als json ausgeben
|
169 |
+
#data = response.json()
|
170 |
+
# Den "content" auswählen, da dort die Antwort der Ki enthalten ist
|
171 |
+
#result = data['choices'][0]['message']['content']
|
172 |
+
#worte = result.split()
|
173 |
+
#if len(worte) > 2:
|
174 |
+
#file_path_download = "data/" + str(len(chats)) + "_Chatverlauf.pdf"
|
175 |
+
#else:
|
176 |
+
#file_path_download = "data/" + str(len(chats)) + "_" + result + ".pdf"
|
177 |
+
|
178 |
+
#erstellePdf(file_path_download, result, dic_history)
|
179 |
+
|
180 |
+
|
181 |
+
#die session variable in gradio erweitern und alle fliepath neu in das gr.File hochladen
|
182 |
+
#uploaded_file_paths= uploaded_file_paths + [file_path_download]
|
183 |
+
|
184 |
+
return None, gr.Image(visible=False), uploaded_file_paths, [], gr.File(uploaded_file_paths, label="Download-Chatverläufe", visible=True, file_count="multiple", interactive = False), chats
|
185 |
+
|
186 |
+
|
187 |
+
#wenn löschen Button geklickt
|
188 |
+
def clear_all3(history):
|
189 |
+
#die session variable in gradio erweitern und alle fliepath neu in das gr.File hochladen
|
190 |
+
uploaded_file_paths= ""
|
191 |
+
return None, gr.Image(visible=False), [],
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
##############################################
|
196 |
+
#History - die Frage oder das File eintragen...
|
197 |
+
#in history_file ist ein file gespeichert, falls voher im Verlauf schon ein File hochgeladen wurde.
|
198 |
+
#wird ein neuer File hochgeladen, so wird history_fiel dadurch ersetzt
|
199 |
+
|
200 |
+
def add_text(chatbot, history, prompt, file, file_history):
|
201 |
+
if (file == None):
|
202 |
+
chatbot = chatbot +[(prompt, None)]
|
203 |
+
else:
|
204 |
+
file_history = file
|
205 |
+
if (prompt == ""):
|
206 |
+
chatbot=chatbot + [((file.name,), "Prompt fehlt!")]
|
207 |
+
else:
|
208 |
+
chatbot = chatbot +[("Hochgeladenes Dokument: "+ get_filename(file) +"\n" + prompt, None)]
|
209 |
+
|
210 |
+
return chatbot, history, prompt, file, file_history, gr.Image(visible = False), ""
|
211 |
+
|
212 |
+
|
213 |
+
############################################
|
214 |
+
#nach dem Upload soll das zusätzliche Fenster mit dem image drinnen angezeigt werden
|
215 |
+
|
216 |
+
def file_anzeigen(file):
|
217 |
+
ext = analyze_file(file)
|
218 |
+
if (ext == "png" or ext == "PNG" or ext == "jpg" or ext == "jpeg" or ext == "JPG" or ext == "JPEG"):
|
219 |
+
return gr.Image(width=47, visible=True, interactive = False, height=47, min_width=47, show_label=False, show_share_button=False, show_download_button=False, scale = 0.5), file, file
|
220 |
+
else:
|
221 |
+
return gr.Image(width=47, visible=True, interactive = False, height=47, min_width=47, show_label=False, show_share_button=False, show_download_button=False, scale = 0.5), "data/file.png", file
|
222 |
+
|
223 |
+
def file_loeschen():
|
224 |
+
return None, gr.Image(visible = False)
|
225 |
+
|
226 |
+
|
227 |
+
############################################
|
228 |
+
#wenn 'Stop' Button geklickt, dann Message dazu und das Eingabe-Fenster leeren
|
229 |
+
def cancel_outputing():
|
230 |
+
reset_textbox()
|
231 |
+
return "Stop Done"
|
232 |
+
|
233 |
+
def reset_textbox():
|
234 |
+
return gr.update(value=""),""
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
####################################################
|
239 |
+
#aus einem Text-Prompt die Antwort von KI bekommen
|
240 |
+
def generate_text (prompt, chatbot, history, retriever, top_p=0.6, temperature=0.2, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3, top_k=35):
|
241 |
+
if (prompt == ""):
|
242 |
+
raise gr.Error("Prompt ist erforderlich.")
|
243 |
+
|
244 |
+
try:
|
245 |
+
#########################################
|
246 |
+
#Prompt mit History Daten zusammenstellen:
|
247 |
+
#Prompt an history anhängen und einen Text daraus machen
|
248 |
+
#history_text_und_prompt = generate_prompt_with_history(prompt, history)
|
249 |
+
|
250 |
+
#oder an Hugging Face --------------------------
|
251 |
+
print("HF Anfrage.......................")
|
252 |
+
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
|
253 |
+
|
254 |
+
##############################################
|
255 |
+
#Verschiedene Alternativen als llm übergeben an die rag-chain
|
256 |
+
#############################################
|
257 |
+
#0. Alternative - repo ID
|
258 |
+
# Verwenden Sie die Inference Api von huggingface_hub
|
259 |
+
#llm = InferenceApi(repo_id, token=hf_token)
|
260 |
+
#result = rag_chain(llm, history_text_und_prompt, retriever)
|
261 |
+
|
262 |
+
##############################################
|
263 |
+
#1.Alternative mit Inference API ung HF EndPoint
|
264 |
+
# Erstelle eine HuggingFaceEndPoints-Instanz mit den entsprechenden Endpunkt-Parametern
|
265 |
+
"""
|
266 |
+
llm = HuggingFaceEndpoint(
|
267 |
+
endpoint_url=f"https://api-inference.huggingface.co/models/{MODEL_NAME_HF}",
|
268 |
+
api_key=hf_token,
|
269 |
+
temperature=0.5,
|
270 |
+
max_length=1024,
|
271 |
+
top_k=top_k,
|
272 |
+
top_p=top_p,
|
273 |
+
repetition_penalty=repetition_penalty
|
274 |
+
)
|
275 |
+
result = rag_chain(llm, history_text_und_prompt, retriever)
|
276 |
+
|
277 |
+
#############################################
|
278 |
+
#2. Alternative: mit API_URL
|
279 |
+
#result = rag_chain(API_URL, history_text_und_prompt, retriever)
|
280 |
+
#############################################
|
281 |
+
#3.te Alternative für pipeline
|
282 |
+
# Erstelle eine Pipeline mit den gewünschten Parametern
|
283 |
+
#llm = pipeline("text-generation", model=MODEL_NAME_HF, config={"temperature": 0.5, "max_length": 1024, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}, trust_remote_code=True)
|
284 |
+
#llm = pipeline("summarization", model=MODEL_NAME_HF, trust_remote_code=True)
|
285 |
+
#result = rag_chain(llm, history_text_und_prompt, retriever)
|
286 |
+
"""
|
287 |
+
|
288 |
+
result = rag_chain_simpel(prompt, retriever)
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
raise gr.Error(e)
|
292 |
+
return result, False
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
##############################################################
|
299 |
+
#Eingaben der GUI verarbeiten
|
300 |
+
def generate_auswahl(prompt_in, file, file_history, chatbot, history, anzahl_docs=4, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,top_k=5, validate=False):
|
301 |
+
global vektordatenbank, SPLIT_TO_ORIGINAL_MAPPING
|
302 |
+
|
303 |
+
#nur wenn man sich validiert hat, kann die Anwendung los legen
|
304 |
+
if (validate and not prompt_in == "" and not prompt_in == None):
|
305 |
+
# Vektorstore initialisieren
|
306 |
+
#falls schon ein File hochgeladen wurde, ist es in history_file gespeichert - falls ein neues File hochgeladen wurde, wird es anschließend neu gesetzt
|
307 |
+
neu_file = file_history
|
308 |
+
|
309 |
+
#prompt normalisieren bevor er an die KIs geht
|
310 |
+
prompt = preprocess_text(prompt_in)
|
311 |
+
|
312 |
+
if vektordatenbank is None:
|
313 |
+
print("db neu aufbauen!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1")
|
314 |
+
#Splits zu allen Dokumenten in den Verzeichnissen erstellen
|
315 |
+
#vektordatenbank, SPLIT_TO_ORIGINAL_MAPPING werden aktualisiert
|
316 |
+
create_vectorstore()
|
317 |
+
|
318 |
+
if vektordatenbank:
|
319 |
+
#Retriever erstellen, um die relevanten Slpits zu einem Prompt zu suchen.... (retrieven)
|
320 |
+
retriever = vektordatenbank.as_retriever(search_kwargs = {"k": ANZAHL_DOCS})
|
321 |
+
|
322 |
+
#kein Bild hochgeladen -> auf Text antworten...
|
323 |
+
status = "Antwort der Vektordatenbank"
|
324 |
+
results, status = generate_text(prompt, chatbot, history, retriever, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3, top_k=3)
|
325 |
+
|
326 |
+
# Überprüfen, ob relevante Dokumente gefunden wurden
|
327 |
+
if results['relevant_docs']:
|
328 |
+
# in results sind die preprocessed Splits enthalten, dargestellt werden sollen die originalen:
|
329 |
+
relevant_docs_org = []
|
330 |
+
for result in results['relevant_docs']:
|
331 |
+
split_id = result.get("metadata", {}).get("split_id")
|
332 |
+
if split_id:
|
333 |
+
try:
|
334 |
+
original_split = SPLIT_TO_ORIGINAL_MAPPING[split_id]
|
335 |
+
relevant_docs_org.append(original_split)
|
336 |
+
except Exception as e:
|
337 |
+
print(f"Fehler beim Laden des Mappings...................: {str(e)}")
|
338 |
+
|
339 |
+
else:
|
340 |
+
# Keine relevanten Dokumente gefunden
|
341 |
+
status = "Keine relevanten Dokumente gefunden."
|
342 |
+
relevant_docs_org = []
|
343 |
+
|
344 |
+
relevant_docs = extract_document_info(relevant_docs_org)
|
345 |
+
|
346 |
+
#Ergebnisse für history und chatbot zusammenstellen
|
347 |
+
summary = str(results['answer']) + "\n\n"
|
348 |
+
summary += " ".join([
|
349 |
+
'<div><b>Dokument/Link: </b> <span style="color: #BB70FC;"><a href="' + str(doc['download_link']) + '" target="_blank">' + str(doc['titel']) + '</a></span>'
|
350 |
+
' (<b>Seite:</span> <span style="color: red;">' + str(doc['seite']) + '</b></span>)<br>'
|
351 |
+
'<span><b>Auschnitt:</b> ' + str(doc["content"]) + '</span></div><br>'
|
352 |
+
#'<div><span><b>Link: </b><span style="color: #BB70FC;"><a href="' + str(doc['download_link']) + '" target="_blank">' + str(doc['titel']) + '</a></span></div><br>'
|
353 |
+
for doc in relevant_docs])
|
354 |
+
|
355 |
+
history = history + [[prompt_in, summary]]
|
356 |
+
|
357 |
+
chatbot[-1][1] = summary
|
358 |
+
return chatbot, history, None, file_history, ""
|
359 |
+
else:
|
360 |
+
chatbot[-1][1] = "keine Dokumente gefunden!"
|
361 |
+
return chatbot, history, None, file_history, ""
|
362 |
+
|
363 |
+
|
364 |
+
else: #noch nicht validiert, oder kein Prompt
|
365 |
+
return chatbot, history, None, file_history, "Erst validieren oder einen Prompt eingeben!"
|
366 |
+
|
367 |
+
########################################
|
368 |
+
# Hochladen von Dateien und Vektorstore neu erstellen
|
369 |
+
# Beispiel-Upload-PDF-Funktion
|
370 |
+
def upload_pdf(files):
|
371 |
+
status_message = ""
|
372 |
+
if not files:
|
373 |
+
status_message = " Keine Dateien zum Hochladen! "
|
374 |
+
else:
|
375 |
+
for file in files:
|
376 |
+
try:
|
377 |
+
# Extrahieren des Dateinamens aus dem vollen Pfad
|
378 |
+
filename = os.path.basename(file.name)
|
379 |
+
|
380 |
+
# Extrahieren der Dateiendung
|
381 |
+
file_extension = os.path.splitext(filename)[1]
|
382 |
+
# Bestimmen des Upload-Pfads basierend auf der Dateiendung
|
383 |
+
if file_extension == ".pdf":
|
384 |
+
upload_path = f"chroma/kkg/pdf/{filename}"
|
385 |
+
elif file_extension == ".docx":
|
386 |
+
upload_path = f"chroma/kkg/word/{filename}"
|
387 |
+
else:
|
388 |
+
upload_path = f"chroma/kkg/{filename}"
|
389 |
+
|
390 |
+
# Entfernen der vorhandenen Datei, falls sie existiert
|
391 |
+
if os.path.exists(upload_path):
|
392 |
+
os.remove(upload_path)
|
393 |
+
|
394 |
+
# Datei zum Hugging Face Space hochladen
|
395 |
+
upload_file_to_huggingface(file.name, upload_path)
|
396 |
+
|
397 |
+
except Exception as e:
|
398 |
+
logging.error(f"Error uploading file {file.name}: {e}")
|
399 |
+
status_message = "Nicht alle Dateien konnten hochgeladen werden... "
|
400 |
+
|
401 |
+
status_message = "Hochladen der Dateien abgeschlossen! "
|
402 |
+
|
403 |
+
return gr.Textbox(label="Status", visible = True), display_files(), status_message
|
404 |
+
|
405 |
+
# Nachdem alle Dateien hochgeladen wurden, den Vektorstore neu laden
|
406 |
+
def update_vectorstore(status):
|
407 |
+
try:
|
408 |
+
############################################
|
409 |
+
#Vektorstore neu....
|
410 |
+
############################################
|
411 |
+
create_vectorstore()
|
412 |
+
message = status + "Vektorstore wurde erneuert!"
|
413 |
+
return message, message
|
414 |
+
except Exception as e:
|
415 |
+
message = status + "Fehler beim Erneuern des Vektorstores!"
|
416 |
+
return message, message
|
417 |
+
|
418 |
+
#File Input automatisch nach upload Prozess resetten
|
419 |
+
def reset_file_input():
|
420 |
+
# Zurücksetzen des file inputs
|
421 |
+
return gr.update(value=None)
|
422 |
+
|
423 |
+
# Für die Sttus Anzeige während und Nach File Upload und Vektordatenbank aktualisierung
|
424 |
+
def show_success():
|
425 |
+
return gr.Info( "System erfolgreich aktualisiert!")
|
426 |
+
|
427 |
+
def hide_status():
|
428 |
+
return gr.HTML(value="", label="Status", visible=False) #gr.Textbox( visible = False)
|
429 |
+
|
430 |
+
def show_status():
|
431 |
+
return gr.HTML(value="", label="Status", visible=True) ##gr.Textbox( label="Status", visible = True)
|
432 |
+
|
433 |
+
def show_text_status(status):
|
434 |
+
ausgabe = f"<div style='color: rgb(82, 255, 51) !important; text-align: center; font-size: 20px;'><b>{status}</b></div>" #style='color: red !important; text-align: center; font-size: 20px;'
|
435 |
+
return gr.HTML(value=ausgabe, label="Status", visible=True), ""
|
436 |
+
|
437 |
+
|
438 |
+
########################################
|
439 |
+
# Bot- test gegen schädliche Bots die die Anwendung testen...
|
440 |
+
# Funktion zur Überprüfung der Benutzereingabe
|
441 |
+
# Funktion zur Überprüfung der Eingabe und Aktivierung der Hauptanwendung
|
442 |
+
def validate_input(user_input_validate, validate=False):
|
443 |
+
user_input_hashed = hash_input(user_input_validate)
|
444 |
+
if user_input_hashed == hash_input(ANTI_BOT_PW):
|
445 |
+
return "Richtig! Weiter gehts... ", True, gr.Textbox(visible=False), gr.Button(visible=False)
|
446 |
+
else:
|
447 |
+
return "Falsche Antwort!!!!!!!!!", False, gr.Textbox(label = "", placeholder="Bitte tippen Sie das oben im Moodle Kurs angegebene Wort ein, um zu beweisen, dass Sie kein Bot sind.", visible=True, scale= 5), gr.Button("Validieren", visible = True)
|
448 |
+
"""
|
449 |
+
def custom_css():
|
450 |
+
return
|
451 |
+
#status_system_update {
|
452 |
+
color: red !important;
|
453 |
+
text-align: center;
|
454 |
+
font-size: 20px;
|
455 |
+
}
|
456 |
+
"""
|
457 |
+
|
458 |
+
#############################################################################################
|
459 |
+
# Start Gui Vorabfrage
|
460 |
+
# Validierungs-Interface - Bots weghalten...
|
461 |
+
#################################################################################################
|
462 |
+
print ("Start GUI Hauptanwendung")
|
463 |
+
with open("custom.css", "r", encoding="utf-8") as f:
|
464 |
+
customCSS = f.read()
|
465 |
+
|
466 |
+
#Add Inputs für Tab 2
|
467 |
+
additional_inputs = [
|
468 |
+
gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten", visible=True),
|
469 |
+
gr.Slider(label="Max new tokens", value=1024, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens", visible=True),
|
470 |
+
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit.", visible=True),
|
471 |
+
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
|
472 |
+
]
|
473 |
+
with gr.Blocks(css=customCSS, theme=themeAlex) as demo:
|
474 |
+
#validiert speichern
|
475 |
+
validate = gr.State(True)
|
476 |
+
#Session Variablen, um Weete zu speichern, auch wenn die Felder in der GUI bereits wieder leer sind
|
477 |
+
# history parallel zu chatbot speichern - da in chatbot bei Bildern zum Anzeigen in der GUI die Bilder speziell formatiert werden,
|
478 |
+
# für die Übergabe an die ki aber der Pfad zum Bild behalten werden muss - was in der history der Fall ist!
|
479 |
+
history = gr.State([])
|
480 |
+
uploaded_file_paths= gr.State([])
|
481 |
+
history3 = gr.State([])
|
482 |
+
uploaded_file_paths3= gr.State([])
|
483 |
+
#alle chats einer Session sammeln
|
484 |
+
chats = gr.State({})
|
485 |
+
#damit der Prompt auch nach dem upload in die History noch für predicts_args verfügbar ist
|
486 |
+
user_question = gr.State("")
|
487 |
+
#für die anderen Tabs auch...
|
488 |
+
#damit der Prompt auch nach dem upload in die History noch für predicts_args verfügbar ist
|
489 |
+
user_question2 = gr.State("")
|
490 |
+
user_question3 = gr.State("")
|
491 |
+
attached_file = gr.State(None)
|
492 |
+
attached_file_history = gr.State(None)
|
493 |
+
attached_file3 = gr.State(None)
|
494 |
+
attached_file_history3 = gr.State(None)
|
495 |
+
|
496 |
+
status_display = gr.State("")
|
497 |
+
status_system_update= gr.State("")
|
498 |
+
#status_display2 = gr.State("")
|
499 |
+
#status_display3 = gr.State("")
|
500 |
+
################################################
|
501 |
+
# Tab zum Chatbot mit Text oder Bildeingabe
|
502 |
+
################################################
|
503 |
+
gr.Markdown(description_top)
|
504 |
+
"""
|
505 |
+
with gr.Row():
|
506 |
+
user_input_validate =gr.Textbox(label= "Bitte das oben im Moodle Kurs angegebene Wort eingeben, um die Anwendung zu starten", visible=True, interactive=True, scale= 7)
|
507 |
+
validate_btn = gr.Button("Validieren", visible = True)
|
508 |
+
#validation_result = gr.Text(label="Validierungsergebnis")
|
509 |
+
"""
|
510 |
+
with gr.Tab("KKG KI-Suche") as tab1:
|
511 |
+
with gr.Row():
|
512 |
+
#gr.HTML("LI Chatot")
|
513 |
+
status_display = gr.Markdown("Antwort der KI ...", visible = True) #, elem_id="status_display")
|
514 |
+
with gr.Row():
|
515 |
+
with gr.Column(scale=5):
|
516 |
+
with gr.Row():
|
517 |
+
chatbot = gr.Chatbot(elem_id="li-chat",show_copy_button=True)
|
518 |
+
with gr.Row():
|
519 |
+
with gr.Column(scale=12):
|
520 |
+
user_input = gr.Textbox(
|
521 |
+
show_label=False, placeholder="Gib hier deine Such-Frage ein...",
|
522 |
+
container=False
|
523 |
+
)
|
524 |
+
with gr.Column(min_width=70, scale=1):
|
525 |
+
submitBtn = gr.Button("Senden")
|
526 |
+
with gr.Column(min_width=70, scale=1):
|
527 |
+
cancelBtn = gr.Button("Stop")
|
528 |
+
with gr.Row():
|
529 |
+
image_display = gr.Image( visible=False)
|
530 |
+
upload = gr.UploadButton("📁", file_types=["pdf", "docx", "pptx", "xlsx"], scale = 10, visible = False)
|
531 |
+
emptyBtn = gr.ClearButton([user_input, chatbot, history, attached_file, attached_file_history, image_display], value="🧹 Neue Session", scale=10)
|
532 |
+
|
533 |
+
with gr.Column(visible = False):
|
534 |
+
with gr.Column(min_width=50, scale=1):
|
535 |
+
with gr.Tab(label="KKG-Suche ..."):
|
536 |
+
#Geht nicht, da für alle gleichzeitig sichtbar
|
537 |
+
#chat_selector = gr.CheckboxGroup(label="", choices=update_chat_options())
|
538 |
+
#download_button = gr.Button("Download ausgewählte Chats")
|
539 |
+
file_download = gr.File(label="Noch keine Chatsverläufe", visible=True, interactive = False, file_count="multiple",)
|
540 |
+
|
541 |
+
with gr.Tab(label="Parameter"):
|
542 |
+
#gr.Markdown("# Parameters")
|
543 |
+
#rag_option = gr.Radio(["Aus", "An"], label="KKG Erweiterungen (RAG)", value = "Aus")
|
544 |
+
model_option = gr.Radio(["HuggingFace"], label="Modellauswahl", value = "HuggingFace")
|
545 |
+
#websuche = gr.Radio(["Aus", "An"], label="Web-Suche", value = "Aus")
|
546 |
+
|
547 |
+
|
548 |
+
top_p = gr.Slider(
|
549 |
+
minimum=-0,
|
550 |
+
maximum=1.0,
|
551 |
+
value=0.95,
|
552 |
+
step=0.05,
|
553 |
+
interactive=True,
|
554 |
+
label="Top-p",
|
555 |
+
visible=False,
|
556 |
+
)
|
557 |
+
top_k = gr.Slider(
|
558 |
+
minimum=1,
|
559 |
+
maximum=100,
|
560 |
+
value=35,
|
561 |
+
step=1,
|
562 |
+
interactive=True,
|
563 |
+
label="Top-k",
|
564 |
+
visible=False,
|
565 |
+
)
|
566 |
+
temperature = gr.Slider(
|
567 |
+
minimum=0.1,
|
568 |
+
maximum=2.0,
|
569 |
+
value=0.2,
|
570 |
+
step=0.1,
|
571 |
+
interactive=True,
|
572 |
+
label="Temperature",
|
573 |
+
visible=False
|
574 |
+
)
|
575 |
+
max_length_tokens = gr.Slider(
|
576 |
+
minimum=0,
|
577 |
+
maximum=512,
|
578 |
+
value=512,
|
579 |
+
step=8,
|
580 |
+
interactive=True,
|
581 |
+
label="Max Generation Tokens",
|
582 |
+
visible=False,
|
583 |
+
)
|
584 |
+
max_context_length_tokens = gr.Slider(
|
585 |
+
minimum=0,
|
586 |
+
maximum=4096,
|
587 |
+
value=2048,
|
588 |
+
step=128,
|
589 |
+
interactive=True,
|
590 |
+
label="Max History Tokens",
|
591 |
+
visible=False,
|
592 |
+
)
|
593 |
+
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=False)
|
594 |
+
anzahl_docs = gr.Slider(label="Anzahl Dokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=False)
|
595 |
+
openai_key = gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1, visible = False)
|
596 |
+
|
597 |
+
|
598 |
+
with gr.Tab("Datei hochladen") as tab2:
|
599 |
+
upload_pdf_files = gr.Files(label="PDF- oder Word-Dateien in Zwischenablage", file_count="multiple")
|
600 |
+
output_text = gr.HTML(value="", label="Status", elem_id="status") #gr.Textbox(label="Status", visible = False)
|
601 |
+
message = gr.Markdown(visible=False, elem_id="popup_message")
|
602 |
+
renew_button = gr.Button("Dateien hochladen und System aktualisieren", elem_id="renew_button")
|
603 |
+
file_list = gr.HTML(elem_id="file_list", show_label=False)
|
604 |
+
|
605 |
+
|
606 |
+
gr.Markdown(description)
|
607 |
+
|
608 |
+
######################################
|
609 |
+
# Events und Übergabe Werte an Funktionen
|
610 |
+
#######################################
|
611 |
+
######################################
|
612 |
+
# Für Tab 1: Chatbot
|
613 |
+
#Argumente für generate Funktion als Input
|
614 |
+
predict_args = dict(
|
615 |
+
fn=generate_auswahl,
|
616 |
+
inputs=[
|
617 |
+
user_question,
|
618 |
+
attached_file,
|
619 |
+
attached_file_history,
|
620 |
+
chatbot,
|
621 |
+
history,
|
622 |
+
anzahl_docs,
|
623 |
+
top_p,
|
624 |
+
temperature,
|
625 |
+
max_length_tokens,
|
626 |
+
max_context_length_tokens,
|
627 |
+
repetition_penalty,
|
628 |
+
top_k,
|
629 |
+
validate
|
630 |
+
],
|
631 |
+
outputs=[chatbot, history, attached_file, attached_file_history, status_display],
|
632 |
+
show_progress=True,
|
633 |
+
)
|
634 |
+
|
635 |
+
reset_args = dict(
|
636 |
+
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
|
637 |
+
)
|
638 |
+
|
639 |
+
# Chatbot
|
640 |
+
transfer_input_args = dict(
|
641 |
+
fn=add_text, inputs=[chatbot, history, user_input, attached_file, attached_file_history], outputs=[chatbot, history, user_question, attached_file, attached_file_history, image_display , user_input], show_progress=True
|
642 |
+
)
|
643 |
+
|
644 |
+
##############################################
|
645 |
+
# Button Events....
|
646 |
+
#Validation Button
|
647 |
+
# Event-Handler für die Validierung
|
648 |
+
#validate_btn.click(validate_input, inputs=[user_input_validate, validate], outputs=[status_display, validate, user_input_validate, validate_btn])
|
649 |
+
#user_input_validate.submit(validate_input, inputs=[user_input_validate, validate], outputs=[status_display, validate, user_input_validate, validate_btn])
|
650 |
+
#############################################
|
651 |
+
#1ter Tab
|
652 |
+
predict_event1 = user_input.submit(**transfer_input_args, queue=False,).then(**predict_args)
|
653 |
+
predict_event2 = submitBtn.click(**transfer_input_args, queue=False,).then(**predict_args)
|
654 |
+
predict_event3 = upload.upload(file_anzeigen, [upload], [image_display, image_display, attached_file] ) #.then(**predict_args)
|
655 |
+
emptyBtn.click(clear_all, [history, uploaded_file_paths, chats], [attached_file, image_display, uploaded_file_paths, history, file_download, chats])
|
656 |
+
#Bild Anzeige neben dem Button wieder entfernen oder austauschen..
|
657 |
+
image_display.select(file_loeschen, [], [attached_file, image_display])
|
658 |
+
#Berechnung oder Ausgabe anhalten (kann danach fortgesetzt werden)
|
659 |
+
cancelBtn.click(cancel_outputing, [], [status_display], cancels=[predict_event1,predict_event2, predict_event3])
|
660 |
+
############################################
|
661 |
+
#2ter Tab
|
662 |
+
#renew_button.click(fn=upload_pdf, inputs=upload_pdf_files, outputs=[output_text, file_list])
|
663 |
+
# Hochladen der Dateien und dann Vektorstore aktualisieren
|
664 |
+
renew_button.click(fn=upload_pdf, inputs=[upload_pdf_files], outputs=[output_text, file_list, status_system_update]).then(
|
665 |
+
fn=update_vectorstore, inputs=status_system_update, outputs=[output_text, status_system_update]).then(
|
666 |
+
fn=reset_file_input, inputs=None, outputs=[upload_pdf_files]).then(fn=show_text_status, inputs=status_system_update, outputs=[output_text, status_system_update]) #.then(fn=hide_status, inputs=None, outputs=output_text, show_progress="hidden")
|
667 |
+
demo.load(display_files, outputs=file_list)
|
668 |
+
|
669 |
+
demo.title = "KKG-Suche"
|
670 |
+
demo.queue(default_concurrency_limit=15).launch(debug=True)
|