Spaces:
Running
Running
import gradio as gr | |
import os | |
from together import Together | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
import numpy as np | |
# Initialize the Together client | |
api_key = os.environ.get('TOGETHER_API_KEY') | |
client = Together(api_key=api_key) | |
def generate_gradio_app(image): | |
if not api_key: | |
return "Error: TOGETHER_API_KEY not set. Please check your API key." | |
try: | |
# Convert numpy array to PIL Image | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image.astype('uint8'), 'RGB') | |
# Convert the image to base64 | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
# Prepare the prompt | |
prompt = """You are a UX/UI designer. Describe the attached screenshot or UI mockup in detail. I will feed in the output you give me to a coding model that will attempt to recreate this mockup as a Gradio app, so please think step by step and describe the UI in detail. Pay close attention to background color, text color, font size, font family, padding, margin, border, etc. Match the colors and sizes exactly. Make sure to mention every part of the screenshot including any headers, footers, etc. Use the exact text from the screenshot. After describing the UI, suggest how this could be implemented using Gradio components.""" | |
# Make the API call | |
stream = client.chat.completions.create( | |
model="meta-llama/Llama-Vision-Free", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/png;base64,{img_str}", | |
}, | |
}, | |
], | |
} | |
], | |
max_tokens=2048, | |
temperature=0.7, | |
top_p=0.7, | |
top_k=50, | |
repetition_penalty=1, | |
stop=["<|eot_id|>", "<|eom_id|>"], | |
stream=True | |
) | |
# Collect the streamed response | |
generated_text = "" | |
for chunk in stream: | |
if chunk.choices[0].delta.content is not None: | |
generated_text += chunk.choices[0].delta.content | |
yield generated_text # Yield partial results for gradio to update in real-time | |
return generated_text | |
except Exception as e: | |
error_message = str(e) | |
return f"An error occurred: {error_message}\nPlease try again or check your API key and connection." | |
with gr.Blocks() as demo: | |
gr.Markdown("# Analyze wireframe and suggest Gradio app layout") | |
gr.Markdown("Upload an image of your UI design for analysis and suggestions.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(label="Upload a screenshot", elem_id="image_upload") | |
generate_button = gr.Button("Analyze and Suggest", variant="primary") | |
with gr.Column(scale=2): | |
text_output = gr.Textbox(label="Analysis and Suggestions", lines=20) | |
generate_button.click( | |
fn=generate_gradio_app, | |
inputs=[image_input], | |
outputs=[text_output] | |
) | |
demo.launch() |