akhaliq HF staff commited on
Commit
30d77b6
1 Parent(s): 4280f5a
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -19,7 +19,7 @@ model, transform = depth_pro.create_model_and_transforms()
19
  model = model.to(device)
20
  model.eval()
21
 
22
- def resize_image(image_path, max_size=1024):
23
  with Image.open(image_path) as img:
24
  # Calculate the new size while maintaining aspect ratio
25
  ratio = max_size / max(img.size)
@@ -67,7 +67,7 @@ def predict_depth(input_image):
67
  inverse_depth_clipped = np.clip(inverse_depth, 0, 10)
68
 
69
  # Create a color map
70
- plt.figure(figsize=(10, 10))
71
  plt.imshow(inverse_depth_clipped, cmap='viridis')
72
  plt.colorbar(label='Inverse Depth')
73
  plt.title('Predicted Inverse Depth Map')
@@ -75,7 +75,7 @@ def predict_depth(input_image):
75
 
76
  # Save the plot to a file
77
  output_path = "inverse_depth_map.png"
78
- plt.savefig(output_path)
79
  plt.close()
80
 
81
  return output_path, f"Focal length: {focallength_px:.2f} pixels"
@@ -90,9 +90,12 @@ def predict_depth(input_image):
90
  iface = gr.Interface(
91
  fn=predict_depth,
92
  inputs=gr.Image(type="filepath"),
93
- outputs=[gr.Image(type="filepath", label="Inverse Depth Map"), gr.Textbox(label="Focal Length or Error Message")],
 
 
 
94
  title="DepthPro Demo",
95
- description="[DepthPro](https://huggingface.co/apple/DepthPro) is a fast metric depth prediction model. Simply upload an image to predict its inverse depth map and focal length. Large images will be automatically resized."
96
  )
97
 
98
  # Launch the interface
 
19
  model = model.to(device)
20
  model.eval()
21
 
22
+ def resize_image(image_path, max_size=1536):
23
  with Image.open(image_path) as img:
24
  # Calculate the new size while maintaining aspect ratio
25
  ratio = max_size / max(img.size)
 
67
  inverse_depth_clipped = np.clip(inverse_depth, 0, 10)
68
 
69
  # Create a color map
70
+ plt.figure(figsize=(15.36, 15.36), dpi=100) # Set figure size to 1536x1536 pixels
71
  plt.imshow(inverse_depth_clipped, cmap='viridis')
72
  plt.colorbar(label='Inverse Depth')
73
  plt.title('Predicted Inverse Depth Map')
 
75
 
76
  # Save the plot to a file
77
  output_path = "inverse_depth_map.png"
78
+ plt.savefig(output_path, dpi=100, bbox_inches='tight', pad_inches=0)
79
  plt.close()
80
 
81
  return output_path, f"Focal length: {focallength_px:.2f} pixels"
 
90
  iface = gr.Interface(
91
  fn=predict_depth,
92
  inputs=gr.Image(type="filepath"),
93
+ outputs=[
94
+ gr.Image(type="filepath", label="Inverse Depth Map", height=768, width=768), # Set a reasonable display size
95
+ gr.Textbox(label="Focal Length or Error Message")
96
+ ],
97
  title="DepthPro Demo",
98
+ description="[DepthPro](https://huggingface.co/apple/DepthPro) is a fast metric depth prediction model. Simply upload an image to predict its inverse depth map and focal length. Large images will be automatically resized to 1536x1536 pixels."
99
  )
100
 
101
  # Launch the interface