Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024 Apple Inc. All Rights Reserved. | |
# Depth Pro: Sharp Monocular Metric Depth in Less Than a Second | |
from __future__ import annotations | |
from dataclasses import dataclass | |
from typing import Mapping, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torchvision.transforms import ( | |
Compose, | |
ConvertImageDtype, | |
Lambda, | |
Normalize, | |
ToTensor, | |
) | |
from .network.decoder import MultiresConvDecoder | |
from .network.encoder import DepthProEncoder | |
from .network.fov import FOVNetwork | |
from .network.vit_factory import VIT_CONFIG_DICT, ViTPreset, create_vit | |
class DepthProConfig: | |
"""Configuration for DepthPro.""" | |
patch_encoder_preset: ViTPreset | |
image_encoder_preset: ViTPreset | |
decoder_features: int | |
checkpoint_uri: Optional[str] = None | |
fov_encoder_preset: Optional[ViTPreset] = None | |
use_fov_head: bool = True | |
DEFAULT_MONODEPTH_CONFIG_DICT = DepthProConfig( | |
patch_encoder_preset="dinov2l16_384", | |
image_encoder_preset="dinov2l16_384", | |
checkpoint_uri="./checkpoints/depth_pro.pt", | |
decoder_features=256, | |
use_fov_head=True, | |
fov_encoder_preset="dinov2l16_384", | |
) | |
def create_backbone_model( | |
preset: ViTPreset | |
) -> Tuple[nn.Module, ViTPreset]: | |
"""Create and load a backbone model given a config. | |
Args: | |
---- | |
preset: A backbone preset to load pre-defind configs. | |
Returns: | |
------- | |
A Torch module and the associated config. | |
""" | |
if preset in VIT_CONFIG_DICT: | |
config = VIT_CONFIG_DICT[preset] | |
model = create_vit(preset=preset, use_pretrained=False) | |
else: | |
raise KeyError(f"Preset {preset} not found.") | |
return model, config | |
def create_model_and_transforms( | |
config: DepthProConfig = DEFAULT_MONODEPTH_CONFIG_DICT, | |
device: torch.device = torch.device("cpu"), | |
precision: torch.dtype = torch.float32, | |
) -> Tuple[DepthPro, Compose]: | |
"""Create a DepthPro model and load weights from `config.checkpoint_uri`. | |
Args: | |
---- | |
config: The configuration for the DPT model architecture. | |
device: The optional Torch device to load the model onto, default runs on "cpu". | |
precision: The optional precision used for the model, default is FP32. | |
Returns: | |
------- | |
The Torch DepthPro model and associated Transform. | |
""" | |
patch_encoder, patch_encoder_config = create_backbone_model( | |
preset=config.patch_encoder_preset | |
) | |
image_encoder, _ = create_backbone_model( | |
preset=config.image_encoder_preset | |
) | |
fov_encoder = None | |
if config.use_fov_head and config.fov_encoder_preset is not None: | |
fov_encoder, _ = create_backbone_model(preset=config.fov_encoder_preset) | |
dims_encoder = patch_encoder_config.encoder_feature_dims | |
hook_block_ids = patch_encoder_config.encoder_feature_layer_ids | |
encoder = DepthProEncoder( | |
dims_encoder=dims_encoder, | |
patch_encoder=patch_encoder, | |
image_encoder=image_encoder, | |
hook_block_ids=hook_block_ids, | |
decoder_features=config.decoder_features, | |
) | |
decoder = MultiresConvDecoder( | |
dims_encoder=[config.decoder_features] + list(encoder.dims_encoder), | |
dim_decoder=config.decoder_features, | |
) | |
model = DepthPro( | |
encoder=encoder, | |
decoder=decoder, | |
last_dims=(32, 1), | |
use_fov_head=config.use_fov_head, | |
fov_encoder=fov_encoder, | |
).to(device) | |
if precision == torch.half: | |
model.half() | |
transform = Compose( | |
[ | |
ToTensor(), | |
Lambda(lambda x: x.to(device)), | |
Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
ConvertImageDtype(precision), | |
] | |
) | |
if config.checkpoint_uri is not None: | |
state_dict = torch.load(config.checkpoint_uri, map_location="cpu") | |
missing_keys, unexpected_keys = model.load_state_dict( | |
state_dict=state_dict, strict=True | |
) | |
if len(unexpected_keys) != 0: | |
raise KeyError( | |
f"Found unexpected keys when loading monodepth: {unexpected_keys}" | |
) | |
# fc_norm is only for the classification head, | |
# which we would not use. We only use the encoding. | |
missing_keys = [key for key in missing_keys if "fc_norm" not in key] | |
if len(missing_keys) != 0: | |
raise KeyError(f"Keys are missing when loading monodepth: {missing_keys}") | |
return model, transform | |
class DepthPro(nn.Module): | |
"""DepthPro network.""" | |
def __init__( | |
self, | |
encoder: DepthProEncoder, | |
decoder: MultiresConvDecoder, | |
last_dims: tuple[int, int], | |
use_fov_head: bool = True, | |
fov_encoder: Optional[nn.Module] = None, | |
): | |
"""Initialize DepthPro. | |
Args: | |
---- | |
encoder: The DepthProEncoder backbone. | |
decoder: The MultiresConvDecoder decoder. | |
last_dims: The dimension for the last convolution layers. | |
use_fov_head: Whether to use the field-of-view head. | |
fov_encoder: A separate encoder for the field of view. | |
""" | |
super().__init__() | |
self.encoder = encoder | |
self.decoder = decoder | |
dim_decoder = decoder.dim_decoder | |
self.head = nn.Sequential( | |
nn.Conv2d( | |
dim_decoder, dim_decoder // 2, kernel_size=3, stride=1, padding=1 | |
), | |
nn.ConvTranspose2d( | |
in_channels=dim_decoder // 2, | |
out_channels=dim_decoder // 2, | |
kernel_size=2, | |
stride=2, | |
padding=0, | |
bias=True, | |
), | |
nn.Conv2d( | |
dim_decoder // 2, | |
last_dims[0], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
), | |
nn.ReLU(True), | |
nn.Conv2d(last_dims[0], last_dims[1], kernel_size=1, stride=1, padding=0), | |
nn.ReLU(), | |
) | |
# Set the final convoultion layer's bias to be 0. | |
self.head[4].bias.data.fill_(0) | |
# Set the FOV estimation head. | |
if use_fov_head: | |
self.fov = FOVNetwork(num_features=dim_decoder, fov_encoder=fov_encoder) | |
def img_size(self) -> int: | |
"""Return the internal image size of the network.""" | |
return self.encoder.img_size | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
"""Decode by projection and fusion of multi-resolution encodings. | |
Args: | |
---- | |
x (torch.Tensor): Input image. | |
Returns: | |
------- | |
The canonical inverse depth map [m] and the optional estimated field of view [deg]. | |
""" | |
_, _, H, W = x.shape | |
assert H == self.img_size and W == self.img_size | |
encodings = self.encoder(x) | |
features, features_0 = self.decoder(encodings) | |
canonical_inverse_depth = self.head(features) | |
fov_deg = None | |
if hasattr(self, "fov"): | |
fov_deg = self.fov.forward(x, features_0.detach()) | |
return canonical_inverse_depth, fov_deg | |
def infer( | |
self, | |
x: torch.Tensor, | |
f_px: Optional[Union[float, torch.Tensor]] = None, | |
interpolation_mode="bilinear", | |
) -> Mapping[str, torch.Tensor]: | |
"""Infer depth and fov for a given image. | |
If the image is not at network resolution, it is resized to 1536x1536 and | |
the estimated depth is resized to the original image resolution. | |
Note: if the focal length is given, the estimated value is ignored and the provided | |
focal length is use to generate the metric depth values. | |
Args: | |
---- | |
x (torch.Tensor): Input image | |
f_px (torch.Tensor): Optional focal length in pixels corresponding to `x`. | |
interpolation_mode (str): Interpolation function for downsampling/upsampling. | |
Returns: | |
------- | |
Tensor dictionary (torch.Tensor): depth [m], focallength [pixels]. | |
""" | |
if len(x.shape) == 3: | |
x = x.unsqueeze(0) | |
_, _, H, W = x.shape | |
resize = H != self.img_size or W != self.img_size | |
if resize: | |
x = nn.functional.interpolate( | |
x, | |
size=(self.img_size, self.img_size), | |
mode=interpolation_mode, | |
align_corners=False, | |
) | |
canonical_inverse_depth, fov_deg = self.forward(x) | |
if f_px is None: | |
f_px = 0.5 * W / torch.tan(0.5 * torch.deg2rad(fov_deg.to(torch.float))) | |
inverse_depth = canonical_inverse_depth * (W / f_px) | |
f_px = f_px.squeeze() | |
if resize: | |
inverse_depth = nn.functional.interpolate( | |
inverse_depth, size=(H, W), mode=interpolation_mode, align_corners=False | |
) | |
depth = 1.0 / torch.clamp(inverse_depth, min=1e-4, max=1e4) | |
return { | |
"depth": depth.squeeze(), | |
"focallength_px": f_px, | |
} | |