Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,817 Bytes
de1b1de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
from typing import List, Tuple
import numpy as np
def connected_component(r: np.ndarray, c: np.ndarray) -> List[List[int]]:
"""Find connected components in the given row and column indices.
Args:
----
r (np.ndarray): Row indices.
c (np.ndarray): Column indices.
Yields:
------
List[int]: Indices of connected components.
"""
indices = [0]
for i in range(1, r.size):
if r[i] == r[indices[-1]] and c[i] == c[indices[-1]] + 1:
indices.append(i)
else:
yield indices
indices = [i]
yield indices
def nms_horizontal(ratio: np.ndarray, threshold: float) -> np.ndarray:
"""Apply Non-Maximum Suppression (NMS) horizontally on the given ratio matrix.
Args:
----
ratio (np.ndarray): Input ratio matrix.
threshold (float): Threshold for NMS.
Returns:
-------
np.ndarray: Binary mask after applying NMS.
"""
mask = np.zeros_like(ratio, dtype=bool)
r, c = np.nonzero(ratio > threshold)
if len(r) == 0:
return mask
for ids in connected_component(r, c):
values = [ratio[r[i], c[i]] for i in ids]
mi = np.argmax(values)
mask[r[ids[mi]], c[ids[mi]]] = True
return mask
def nms_vertical(ratio: np.ndarray, threshold: float) -> np.ndarray:
"""Apply Non-Maximum Suppression (NMS) vertically on the given ratio matrix.
Args:
----
ratio (np.ndarray): Input ratio matrix.
threshold (float): Threshold for NMS.
Returns:
-------
np.ndarray: Binary mask after applying NMS.
"""
return np.transpose(nms_horizontal(np.transpose(ratio), threshold))
def fgbg_depth(
d: np.ndarray, t: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Find foreground-background relations between neighboring pixels.
Args:
----
d (np.ndarray): Depth matrix.
t (float): Threshold for comparison.
Returns:
-------
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating
left, top, right, and bottom foreground-background relations.
"""
right_is_big_enough = (d[..., :, 1:] / d[..., :, :-1]) > t
left_is_big_enough = (d[..., :, :-1] / d[..., :, 1:]) > t
bottom_is_big_enough = (d[..., 1:, :] / d[..., :-1, :]) > t
top_is_big_enough = (d[..., :-1, :] / d[..., 1:, :]) > t
return (
left_is_big_enough,
top_is_big_enough,
right_is_big_enough,
bottom_is_big_enough,
)
def fgbg_depth_thinned(
d: np.ndarray, t: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Find foreground-background relations between neighboring pixels with Non-Maximum Suppression.
Args:
----
d (np.ndarray): Depth matrix.
t (float): Threshold for NMS.
Returns:
-------
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating
left, top, right, and bottom foreground-background relations with NMS applied.
"""
right_is_big_enough = nms_horizontal(d[..., :, 1:] / d[..., :, :-1], t)
left_is_big_enough = nms_horizontal(d[..., :, :-1] / d[..., :, 1:], t)
bottom_is_big_enough = nms_vertical(d[..., 1:, :] / d[..., :-1, :], t)
top_is_big_enough = nms_vertical(d[..., :-1, :] / d[..., 1:, :], t)
return (
left_is_big_enough,
top_is_big_enough,
right_is_big_enough,
bottom_is_big_enough,
)
def fgbg_binary_mask(
d: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Find foreground-background relations between neighboring pixels in binary masks.
Args:
----
d (np.ndarray): Binary depth matrix.
Returns:
-------
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Four matrices indicating
left, top, right, and bottom foreground-background relations in binary masks.
"""
assert d.dtype == bool
right_is_big_enough = d[..., :, 1:] & ~d[..., :, :-1]
left_is_big_enough = d[..., :, :-1] & ~d[..., :, 1:]
bottom_is_big_enough = d[..., 1:, :] & ~d[..., :-1, :]
top_is_big_enough = d[..., :-1, :] & ~d[..., 1:, :]
return (
left_is_big_enough,
top_is_big_enough,
right_is_big_enough,
bottom_is_big_enough,
)
def edge_recall_matting(pr: np.ndarray, gt: np.ndarray, t: float) -> float:
"""Calculate edge recall for image matting.
Args:
----
pr (np.ndarray): Predicted depth matrix.
gt (np.ndarray): Ground truth binary mask.
t (float): Threshold for NMS.
Returns:
-------
float: Edge recall value.
"""
assert gt.dtype == bool
ap, bp, cp, dp = fgbg_depth_thinned(pr, t)
ag, bg, cg, dg = fgbg_binary_mask(gt)
return 0.25 * (
np.count_nonzero(ap & ag) / max(np.count_nonzero(ag), 1)
+ np.count_nonzero(bp & bg) / max(np.count_nonzero(bg), 1)
+ np.count_nonzero(cp & cg) / max(np.count_nonzero(cg), 1)
+ np.count_nonzero(dp & dg) / max(np.count_nonzero(dg), 1)
)
def boundary_f1(
pr: np.ndarray,
gt: np.ndarray,
t: float,
return_p: bool = False,
return_r: bool = False,
) -> float:
"""Calculate Boundary F1 score.
Args:
----
pr (np.ndarray): Predicted depth matrix.
gt (np.ndarray): Ground truth depth matrix.
t (float): Threshold for comparison.
return_p (bool, optional): If True, return precision. Defaults to False.
return_r (bool, optional): If True, return recall. Defaults to False.
Returns:
-------
float: Boundary F1 score, or precision, or recall depending on the flags.
"""
ap, bp, cp, dp = fgbg_depth(pr, t)
ag, bg, cg, dg = fgbg_depth(gt, t)
r = 0.25 * (
np.count_nonzero(ap & ag) / max(np.count_nonzero(ag), 1)
+ np.count_nonzero(bp & bg) / max(np.count_nonzero(bg), 1)
+ np.count_nonzero(cp & cg) / max(np.count_nonzero(cg), 1)
+ np.count_nonzero(dp & dg) / max(np.count_nonzero(dg), 1)
)
p = 0.25 * (
np.count_nonzero(ap & ag) / max(np.count_nonzero(ap), 1)
+ np.count_nonzero(bp & bg) / max(np.count_nonzero(bp), 1)
+ np.count_nonzero(cp & cg) / max(np.count_nonzero(cp), 1)
+ np.count_nonzero(dp & dg) / max(np.count_nonzero(dp), 1)
)
if r + p == 0:
return 0.0
if return_p:
return p
if return_r:
return r
return 2 * (r * p) / (r + p)
def get_thresholds_and_weights(
t_min: float, t_max: float, N: int
) -> Tuple[np.ndarray, np.ndarray]:
"""Generate thresholds and weights for the given range.
Args:
----
t_min (float): Minimum threshold.
t_max (float): Maximum threshold.
N (int): Number of thresholds.
Returns:
-------
Tuple[np.ndarray, np.ndarray]: Array of thresholds and corresponding weights.
"""
thresholds = np.linspace(t_min, t_max, N)
weights = thresholds / thresholds.sum()
return thresholds, weights
def invert_depth(depth: np.ndarray, eps: float = 1e-6) -> np.ndarray:
"""Inverts a depth map with numerical stability.
Args:
----
depth (np.ndarray): Depth map to be inverted.
eps (float): Minimum value to avoid division by zero (default is 1e-6).
Returns:
-------
np.ndarray: Inverted depth map.
"""
inverse_depth = 1.0 / depth.clip(min=eps)
return inverse_depth
def SI_boundary_F1(
predicted_depth: np.ndarray,
target_depth: np.ndarray,
t_min: float = 1.05,
t_max: float = 1.25,
N: int = 10,
) -> float:
"""Calculate Scale-Invariant Boundary F1 Score for depth-based ground-truth.
Args:
----
predicted_depth (np.ndarray): Predicted depth matrix.
target_depth (np.ndarray): Ground truth depth matrix.
t_min (float, optional): Minimum threshold. Defaults to 1.05.
t_max (float, optional): Maximum threshold. Defaults to 1.25.
N (int, optional): Number of thresholds. Defaults to 10.
Returns:
-------
float: Scale-Invariant Boundary F1 Score.
"""
assert predicted_depth.ndim == target_depth.ndim == 2
thresholds, weights = get_thresholds_and_weights(t_min, t_max, N)
f1_scores = np.array(
[
boundary_f1(invert_depth(predicted_depth), invert_depth(target_depth), t)
for t in thresholds
]
)
return np.sum(f1_scores * weights)
def SI_boundary_Recall(
predicted_depth: np.ndarray,
target_mask: np.ndarray,
t_min: float = 1.05,
t_max: float = 1.25,
N: int = 10,
alpha_threshold: float = 0.1,
) -> float:
"""Calculate Scale-Invariant Boundary Recall Score for mask-based ground-truth.
Args:
----
predicted_depth (np.ndarray): Predicted depth matrix.
target_mask (np.ndarray): Ground truth binary mask.
t_min (float, optional): Minimum threshold. Defaults to 1.05.
t_max (float, optional): Maximum threshold. Defaults to 1.25.
N (int, optional): Number of thresholds. Defaults to 10.
alpha_threshold (float, optional): Threshold for alpha masking. Defaults to 0.1.
Returns:
-------
float: Scale-Invariant Boundary Recall Score.
"""
assert predicted_depth.ndim == target_mask.ndim == 2
thresholds, weights = get_thresholds_and_weights(t_min, t_max, N)
thresholded_target = target_mask > alpha_threshold
recall_scores = np.array(
[
edge_recall_matting(
invert_depth(predicted_depth), thresholded_target, t=float(t)
)
for t in thresholds
]
)
weighted_recall = np.sum(recall_scores * weights)
return weighted_recall
|