Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,123 Bytes
de1b1de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
# Depth Pro: Sharp Monocular Metric Depth in Less Than a Second
from __future__ import annotations
from dataclasses import dataclass
from typing import Mapping, Optional, Tuple, Union
import torch
from torch import nn
from torchvision.transforms import (
Compose,
ConvertImageDtype,
Lambda,
Normalize,
ToTensor,
)
from .network.decoder import MultiresConvDecoder
from .network.encoder import DepthProEncoder
from .network.fov import FOVNetwork
from .network.vit_factory import VIT_CONFIG_DICT, ViTPreset, create_vit
@dataclass
class DepthProConfig:
"""Configuration for DepthPro."""
patch_encoder_preset: ViTPreset
image_encoder_preset: ViTPreset
decoder_features: int
checkpoint_uri: Optional[str] = None
fov_encoder_preset: Optional[ViTPreset] = None
use_fov_head: bool = True
DEFAULT_MONODEPTH_CONFIG_DICT = DepthProConfig(
patch_encoder_preset="dinov2l16_384",
image_encoder_preset="dinov2l16_384",
checkpoint_uri="./checkpoints/depth_pro.pt",
decoder_features=256,
use_fov_head=True,
fov_encoder_preset="dinov2l16_384",
)
def create_backbone_model(
preset: ViTPreset
) -> Tuple[nn.Module, ViTPreset]:
"""Create and load a backbone model given a config.
Args:
----
preset: A backbone preset to load pre-defind configs.
Returns:
-------
A Torch module and the associated config.
"""
if preset in VIT_CONFIG_DICT:
config = VIT_CONFIG_DICT[preset]
model = create_vit(preset=preset, use_pretrained=False)
else:
raise KeyError(f"Preset {preset} not found.")
return model, config
def create_model_and_transforms(
config: DepthProConfig = DEFAULT_MONODEPTH_CONFIG_DICT,
device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float32,
) -> Tuple[DepthPro, Compose]:
"""Create a DepthPro model and load weights from `config.checkpoint_uri`.
Args:
----
config: The configuration for the DPT model architecture.
device: The optional Torch device to load the model onto, default runs on "cpu".
precision: The optional precision used for the model, default is FP32.
Returns:
-------
The Torch DepthPro model and associated Transform.
"""
patch_encoder, patch_encoder_config = create_backbone_model(
preset=config.patch_encoder_preset
)
image_encoder, _ = create_backbone_model(
preset=config.image_encoder_preset
)
fov_encoder = None
if config.use_fov_head and config.fov_encoder_preset is not None:
fov_encoder, _ = create_backbone_model(preset=config.fov_encoder_preset)
dims_encoder = patch_encoder_config.encoder_feature_dims
hook_block_ids = patch_encoder_config.encoder_feature_layer_ids
encoder = DepthProEncoder(
dims_encoder=dims_encoder,
patch_encoder=patch_encoder,
image_encoder=image_encoder,
hook_block_ids=hook_block_ids,
decoder_features=config.decoder_features,
)
decoder = MultiresConvDecoder(
dims_encoder=[config.decoder_features] + list(encoder.dims_encoder),
dim_decoder=config.decoder_features,
)
model = DepthPro(
encoder=encoder,
decoder=decoder,
last_dims=(32, 1),
use_fov_head=config.use_fov_head,
fov_encoder=fov_encoder,
).to(device)
if precision == torch.half:
model.half()
transform = Compose(
[
ToTensor(),
Lambda(lambda x: x.to(device)),
Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
ConvertImageDtype(precision),
]
)
if config.checkpoint_uri is not None:
state_dict = torch.load(config.checkpoint_uri, map_location="cpu")
missing_keys, unexpected_keys = model.load_state_dict(
state_dict=state_dict, strict=True
)
if len(unexpected_keys) != 0:
raise KeyError(
f"Found unexpected keys when loading monodepth: {unexpected_keys}"
)
# fc_norm is only for the classification head,
# which we would not use. We only use the encoding.
missing_keys = [key for key in missing_keys if "fc_norm" not in key]
if len(missing_keys) != 0:
raise KeyError(f"Keys are missing when loading monodepth: {missing_keys}")
return model, transform
class DepthPro(nn.Module):
"""DepthPro network."""
def __init__(
self,
encoder: DepthProEncoder,
decoder: MultiresConvDecoder,
last_dims: tuple[int, int],
use_fov_head: bool = True,
fov_encoder: Optional[nn.Module] = None,
):
"""Initialize DepthPro.
Args:
----
encoder: The DepthProEncoder backbone.
decoder: The MultiresConvDecoder decoder.
last_dims: The dimension for the last convolution layers.
use_fov_head: Whether to use the field-of-view head.
fov_encoder: A separate encoder for the field of view.
"""
super().__init__()
self.encoder = encoder
self.decoder = decoder
dim_decoder = decoder.dim_decoder
self.head = nn.Sequential(
nn.Conv2d(
dim_decoder, dim_decoder // 2, kernel_size=3, stride=1, padding=1
),
nn.ConvTranspose2d(
in_channels=dim_decoder // 2,
out_channels=dim_decoder // 2,
kernel_size=2,
stride=2,
padding=0,
bias=True,
),
nn.Conv2d(
dim_decoder // 2,
last_dims[0],
kernel_size=3,
stride=1,
padding=1,
),
nn.ReLU(True),
nn.Conv2d(last_dims[0], last_dims[1], kernel_size=1, stride=1, padding=0),
nn.ReLU(),
)
# Set the final convoultion layer's bias to be 0.
self.head[4].bias.data.fill_(0)
# Set the FOV estimation head.
if use_fov_head:
self.fov = FOVNetwork(num_features=dim_decoder, fov_encoder=fov_encoder)
@property
def img_size(self) -> int:
"""Return the internal image size of the network."""
return self.encoder.img_size
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Decode by projection and fusion of multi-resolution encodings.
Args:
----
x (torch.Tensor): Input image.
Returns:
-------
The canonical inverse depth map [m] and the optional estimated field of view [deg].
"""
_, _, H, W = x.shape
assert H == self.img_size and W == self.img_size
encodings = self.encoder(x)
features, features_0 = self.decoder(encodings)
canonical_inverse_depth = self.head(features)
fov_deg = None
if hasattr(self, "fov"):
fov_deg = self.fov.forward(x, features_0.detach())
return canonical_inverse_depth, fov_deg
@torch.no_grad()
def infer(
self,
x: torch.Tensor,
f_px: Optional[Union[float, torch.Tensor]] = None,
interpolation_mode="bilinear",
) -> Mapping[str, torch.Tensor]:
"""Infer depth and fov for a given image.
If the image is not at network resolution, it is resized to 1536x1536 and
the estimated depth is resized to the original image resolution.
Note: if the focal length is given, the estimated value is ignored and the provided
focal length is use to generate the metric depth values.
Args:
----
x (torch.Tensor): Input image
f_px (torch.Tensor): Optional focal length in pixels corresponding to `x`.
interpolation_mode (str): Interpolation function for downsampling/upsampling.
Returns:
-------
Tensor dictionary (torch.Tensor): depth [m], focallength [pixels].
"""
if len(x.shape) == 3:
x = x.unsqueeze(0)
_, _, H, W = x.shape
resize = H != self.img_size or W != self.img_size
if resize:
x = nn.functional.interpolate(
x,
size=(self.img_size, self.img_size),
mode=interpolation_mode,
align_corners=False,
)
canonical_inverse_depth, fov_deg = self.forward(x)
if f_px is None:
f_px = 0.5 * W / torch.tan(0.5 * torch.deg2rad(fov_deg.to(torch.float)))
inverse_depth = canonical_inverse_depth * (W / f_px)
f_px = f_px.squeeze()
if resize:
inverse_depth = nn.functional.interpolate(
inverse_depth, size=(H, W), mode=interpolation_mode, align_corners=False
)
depth = 1.0 / torch.clamp(inverse_depth, min=1e-4, max=1e4)
return {
"depth": depth.squeeze(),
"focallength_px": f_px,
}
|