import os import gradio as gr from together import Together from PIL import Image import io import base64 # Initialize the Together AI client client = Together(api_key=os.environ.get('TOGETHER_API_KEY')) def encode_image(image_path): try: with Image.open(image_path) as img: buffered = io.BytesIO() img.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode('utf-8') except Exception as e: print(f"Error encoding image: {e}") return None def chat_with_image(message, image, history): # Prepare the messages messages = [{"role": "system", "content": "You are a helpful assistant that can analyze images and text."}] for human, assistant in history: if human.startswith("Image: "): # This is an image message image_path = human.split(": ", 1)[1] encoded_image = encode_image(image_path) if encoded_image: messages.append({ "role": "user", "content": [ {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_image}"}}, {"type": "text", "text": "What's in this image?"} ] }) else: messages.append({"role": "user", "content": "I tried to upload an image, but there was an error."}) else: # This is a text-only message messages.append({"role": "user", "content": human}) messages.append({"role": "assistant", "content": assistant}) # Add the current message if image: encoded_image = encode_image(image) if encoded_image: messages.append({ "role": "user", "content": [ {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_image}"}}, {"type": "text", "text": message or "What's in this image?"} ] }) else: messages.append({"role": "user", "content": "I tried to upload an image, but there was an error."}) else: messages.append({"role": "user", "content": message}) # Call the Together AI API try: response = client.chat.completions.create( model="meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo", messages=messages, max_tokens=512, temperature=0.7, top_p=0.7, top_k=50, repetition_penalty=1, stop=["<|eot_id|>", "<|eom_id|>"], stream=True ) # Accumulate the response full_response = "" for chunk in response: if chunk.choices[0].delta.content is not None: full_response += chunk.choices[0].delta.content yield full_response except Exception as e: yield f"An error occurred: {str(e)}" # Create the Gradio interface with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() image = gr.Image(type="filepath") clear = gr.Button("Clear") def user(user_message, image, history): if image: return "", None, history + [[f"Image: {image}", None]] else: return "", None, history + [[user_message, None]] def bot(history): user_message = history[-1][0] image = None if user_message.startswith("Image: "): image = user_message.split(": ", 1)[1] user_message = "What's in this image?" bot_message = chat_with_image(user_message, image, history[:-1]) history[-1][1] = "" for character in bot_message: history[-1][1] += character yield history msg.submit(user, [msg, image, chatbot], [msg, image, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.queue() demo.launch()