Spaces:
Runtime error
Runtime error
ajit
commited on
Commit
•
d180d0a
1
Parent(s):
42f5687
Debug prints
Browse files- aggregate_server_json.py +7 -3
aggregate_server_json.py
CHANGED
@@ -204,13 +204,15 @@ class AggregateNER:
|
|
204 |
mean_score = 0
|
205 |
#sum_deviation = 0
|
206 |
#for node in dist:
|
207 |
-
|
208 |
#variance = sum_deviation/len(dist)
|
209 |
#std_dev = math.sqrt(variance)
|
210 |
-
#
|
211 |
-
threshold =
|
|
|
212 |
pick_count = 1
|
213 |
for node in dist:
|
|
|
214 |
if (node["confidence"] >= threshold):
|
215 |
ret_arr.append({"e":node["e"],"conf":node["confidence"]})
|
216 |
pick_count += 1
|
@@ -292,8 +294,10 @@ class AggregateNER:
|
|
292 |
#here cs and ci are same. So use two consecutive cs predictions if meaningful
|
293 |
if (len(results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution']) >= 2):
|
294 |
ret_arr = self.get_predictions_above_threshold(results[server_index]["orig_cs_prediction_details"][pivot_index])
|
|
|
295 |
orig_cs_second_entity = results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution'][1]
|
296 |
m2_cs = orig_cs_second_entity["e"].split('[')[0]
|
|
|
297 |
is_cs_included = True if (m2_cs in servers_arr[server_index]["precedence"]) else False
|
298 |
is_cs_included = True #Disabling cs included check. If prediction above threshold is cross prediction, then letting it through
|
299 |
assert (m2_cs != m1)
|
|
|
204 |
mean_score = 0
|
205 |
#sum_deviation = 0
|
206 |
#for node in dist:
|
207 |
+
# sum_deviation += (mean_score - node["confidence"])*(mean_score - node["confidence"])
|
208 |
#variance = sum_deviation/len(dist)
|
209 |
#std_dev = math.sqrt(variance)
|
210 |
+
#print("mean",mean,"std_dev",std_dev)
|
211 |
+
#threshold = mean_score - std_dev*self.threshold #default is 1 standard deviation from mean
|
212 |
+
threshold = mean_score
|
213 |
pick_count = 1
|
214 |
for node in dist:
|
215 |
+
print("conf:",node["confidence"],"threshold:",threshold)
|
216 |
if (node["confidence"] >= threshold):
|
217 |
ret_arr.append({"e":node["e"],"conf":node["confidence"]})
|
218 |
pick_count += 1
|
|
|
294 |
#here cs and ci are same. So use two consecutive cs predictions if meaningful
|
295 |
if (len(results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution']) >= 2):
|
296 |
ret_arr = self.get_predictions_above_threshold(results[server_index]["orig_cs_prediction_details"][pivot_index])
|
297 |
+
print("orig cs:",results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution'])
|
298 |
orig_cs_second_entity = results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution'][1]
|
299 |
m2_cs = orig_cs_second_entity["e"].split('[')[0]
|
300 |
+
print("m2_cs",m2_cs,"ret_arr",ret_arr)
|
301 |
is_cs_included = True if (m2_cs in servers_arr[server_index]["precedence"]) else False
|
302 |
is_cs_included = True #Disabling cs included check. If prediction above threshold is cross prediction, then letting it through
|
303 |
assert (m2_cs != m1)
|