File size: 10,089 Bytes
854a552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2485275
854a552
 
 
 
 
 
2485275
854a552
2485275
854a552
 
2485275
854a552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2485275
 
854a552
 
 
 
 
 
 
 
 
 
 
 
 
2485275
 
854a552
 
281974e
854a552
 
 
 
 
 
2485275
854a552
2485275
 
854a552
2f4e364
854a552
2485275
854a552
 
 
 
 
2485275
 
854a552
23a2b0d
854a552
2485275
a1dc9c7
 
 
2485275
90a2a07
23a2b0d
854a552
23a2b0d
2485275
a1dc9c7
90a2a07
b842440
a1dc9c7
 
 
854a552
2485275
854a552
 
edf6d87
281974e
2485275
 
 
 
 
 
 
23a2b0d
96c85ad
6d54c78
98c32e8
6d54c78
981bdcf
c79d9d8
2485275
854a552
 
 
 
edf6d87
23a2b0d
2485275
 
 
 
 
 
 
23a2b0d
96c85ad
98c32e8
348b1aa
6d54c78
981bdcf
3094195
2485275
854a552
 
 
 
 
 
2485275
 
854a552
 
 
 
 
 
 
 
 
2485275
562b4f7
 
90a2a07
2485275
 
 
90a2a07
2485275
 
854a552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2485275
 
 
 
1cc4362
44fbf6a
1cc4362
 
854a552
90a2a07
854a552
 
 
 
 
 
 
 
 
2485275
 
 
854a552
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import time
import streamlit as st
import torch
import string
from annotated_text import annotated_text

from flair.data import Sentence
from flair.models import SequenceTagger
from transformers import BertTokenizer, BertForMaskedLM
import BatchInference as bd
import batched_main_NER as ner
import aggregate_server_json as aggr
import json


DEFAULT_TOP_K = 20
SPECIFIC_TAG=":__entity__"



@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def POS_get_model(model_name):
  val = SequenceTagger.load(model_name) # Load the model
  return val

def getPos(s: Sentence):
  texts = []
  labels = []
  for t in s.tokens:
    for label in t.annotation_layers.keys():
      texts.append(t.text)
      labels.append(t.get_labels(label)[0].value)
  return texts, labels

def getDictFromPOS(texts, labels):
  return [["dummy",t,l,"dummy","dummy" ] for t, l in zip(texts, labels)]

def decode(tokenizer, pred_idx, top_clean):
  ignore_tokens = string.punctuation + '[PAD]'
  tokens = []
  for w in pred_idx:
    token = ''.join(tokenizer.decode(w).split())
    if token not in ignore_tokens:
      tokens.append(token.replace('##', ''))
  return '\n'.join(tokens[:top_clean])

def encode(tokenizer, text_sentence, add_special_tokens=True):
  text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token)
    # if <mask> is the last token, append a "." so that models dont predict punctuation.
  if tokenizer.mask_token == text_sentence.split()[-1]:
    text_sentence += ' .'

    input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)])
    mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0]
  return input_ids, mask_idx

def get_all_predictions(text_sentence, top_clean=5):
    # ========================= BERT =================================
  input_ids, mask_idx = encode(bert_tokenizer, text_sentence)
  with torch.no_grad():
    predict = bert_model(input_ids)[0]
  bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean)
  return {'bert': bert}

def get_bert_prediction(input_text,top_k):
  try:
    input_text += ' <mask>'
    res = get_all_predictions(input_text, top_clean=int(top_k))
    return res
  except Exception as error:
    pass


def load_pos_model():
  checkpoint = "flair/pos-english"
  return  POS_get_model(checkpoint)




def init_session_states():
  if 'top_k' not in st.session_state:
    st.session_state['top_k'] = 20
  if 'pos_model' not in st.session_state:
    st.session_state['pos_model'] = None
  if 'phi_model' not in st.session_state:
    st.session_state['phi_model'] = None
  if 'ner_phi' not in st.session_state:
    st.session_state['ner_phi'] = None
  if 'aggr' not in st.session_state:
    st.session_state['aggr'] = None



def get_pos_arr(input_text,display_area):
   if (st.session_state['pos_model'] is None):
     display_area.text("Loading model 2 of 2.Loading POS model...")
     st.session_state['pos_model'] = load_pos_model()
   s = Sentence(input_text)
   st.session_state['pos_model'].predict(s)
   texts, labels = getPos(s)
   pos_results = getDictFromPOS(texts, labels)
   return pos_results

def perform_inference(text,display_area):


  if (st.session_state['phi_model'] is None):
    display_area.text("Loading model 1 of 2. BERT model...")
    st.session_state['phi_model'] = bd.BatchInference("bbc/desc_bbc_config.json",'bert-base-cased',False,False,DEFAULT_TOP_K,True,True,       "bbc/","bbc/bbc_labels.txt",False)

  #Load POS model if needed and gets POS tags
  if (SPECIFIC_TAG not in text):
    pos_arr = get_pos_arr(text,display_area)
  else:
    pos_arr = None


  if (st.session_state['ner_phi'] is None):
    display_area.text("Initializing BERT module...")
    st.session_state['ner_phi'] = ner.UnsupNER("bbc/ner_bbc_config.json")

  if (st.session_state['aggr'] is None):
    display_area.text("Initializing Aggregation modeule...")
    st.session_state['aggr'] = aggr.AggregateNER("./ensemble_config.json")

 
  display_area.text("Getting predictions from BERT model...")
  phi_results = st.session_state['phi_model'].get_descriptors(text,pos_arr)
  display_area.text("Computing NER results...")

  display_area.text("Consolidating responses...")
  phi_ner = st.session_state['ner_phi'].tag_sentence_service(text,phi_results)
  obj = json.loads(phi_ner)
  combined_arr = [obj,obj]
  aggregate_results = st.session_state['aggr'].fetch_all(text,combined_arr)
  return aggregate_results



sent_arr = [
"Washington resigned from Washington and flew out of  Washington",
"John Doe flew from New York to Rio De Janiro ",
"Stanford called",
"I met my girl friends at the pub ",
"I met my New York friends at the pub",
"I met my XCorp friends at the pub",
"I met my two friends at the pub",
"The sky turned dark in advance of the storm that was coming from the east ",
"She loves to watch Sunday afternoon football with her family ",
"The United States has the largest prison population in the world, and the highest per-capita incarceration rate",
"He went to a local theater and watched Jaws before the Covid-19 lockdown",
"He converted to Christianity towards the end of his life after being a Buddhist",
"Dr Fyodor Dostovetsky advocates wearing masks in public places to reduce the risk of contracting covid",
"He graduated from Stanford with a master's degree in Physics and Astronomy",
"The  Seahawks had a tough year losing  almost all the games",
"In 2020 , John participated in the Winter Olympics and came third in Ice hockey",
"Paul Erdos died at 83 "
]


sent_arr_masked = [
"Washington:__entity__  resigned from Washington:__entity__  and flew out of Washington:__entity__",
"John:__entity__ Doe:__entity__ flew from New:__entity__ York:__entity__ to Rio:__entity__ De:__entity__ Janiro:__entity__ ",
"Stanford:__entity__ called",
"I met my girl:__entity__ friends at the pub ",
"I met my New:__entity__ York:__entity__ friends at the pub",
"I met my XCorp:__entity__ friends at the pub",
"I met my two:__entity__ friends at the pub",
"The sky turned dark:__entity__ in advance of the storm that was coming from the east ",
"She loves to watch Sunday afternoon football:__entity__ with her family ",
"The United:__entity__ States:__entity__ has the largest prison population in the world, and the highest per-capita incarceration:__entity__ rate:__entity__",
"He went to a local theater and watched Jaws:__entity__ before the Covid-19 lockdown",
"He converted to christianity:__entity__ towards the end of his life after being a buddhist:__entity__",
"Dr:__entity__ Fyodor:__entity__ Dostovetsky:__entity__ advocates wearing masks:__entity__ in public places to reduce the risk of contracting covid",
"He graduated from Stanford:__entity__ with a master's degree in Physics:__entity__ and Astronomy:__entity__",
"The  Seahawks:__entity__  had a tough year losing  almost all the games",
"In 2020:__entity__ , John:__entity__ participated in the Winter:__entity__ Olympics:__entity__ and came third:__entity__ in Ice:__entity__ hockey:__entity__",
"Paul:__entity__ Erdos:__entity__ died at 83:__entity__ "
]

def init_selectbox():
  return st.selectbox(
     'Choose any of the sentences in pull-down below',
     sent_arr,key='my_choice')


def on_text_change():
  text = st.session_state.my_text
  print("in callback: " + text)
  perform_inference(text)

def main():
  try:

    init_session_states()

    st.markdown("<h4 style='text-align: center;'>NER of PERSON,LOCATION,ORG etc.</h4>", unsafe_allow_html=True)
    st.markdown("<h5 style='text-align: center;'>Using a pretrained BERT model with <a href='https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html'>no fine tuning</a><br/><br/></h5>", unsafe_allow_html=True)




    st.write("This app uses 2 models.  Bert-base-cased(**no fine tuning**) and a POS tagger")


    with st.form('my_form'):
      selected_sentence = init_selectbox()
      text_input = st.text_area(label='Type any sentence below',value="")
      submit_button = st.form_submit_button('Submit')
      input_status_area = st.empty()
      display_area = st.empty()
      if 	submit_button:
            start = time.time()
            if (len(text_input) == 0):
              text_input = sent_arr_masked[sent_arr.index(selected_sentence)]
            input_status_area.text("Input sentence:  " + text_input)
            results = perform_inference(text_input,display_area)
            display_area.empty()
            with display_area.container():
              st.text(f"prediction took {time.time() - start:.2f}s")
              st.json(results)




    st.markdown("""
    <small style="font-size:16px; color: #8f8f8f; text-align: left"><i><b>Note:</b> The example sentences in the pull-down above largely tests PHI entities. Biomedical entities are not tested since this model does not perform well on biomedical entities. To see valid predictions for both biomedical and PHI entities  <a href='https://huggingface.co/spaces/ajitrajasekharan/NER-Biomedical-PHI-Ensemble'   target='_blank'>use this ensemble app</a></i></small>
  """, unsafe_allow_html=True)
  
    st.markdown("""
    <small style="font-size:16px; color: #7f7f7f; text-align: left"><br/><br/>Models used: <br/>(1) Bert-base-cased (for PHI entities - Person/location/organization etc.)<br/>(2) Flair POS tagger</small>
  #""", unsafe_allow_html=True)
    st.markdown("""
    <h3 style="font-size:16px; color: #9f9f9f; text-align: center"><b> <a href='https://huggingface.co/spaces/ajitrajasekharan/Qualitative-pretrained-model-evaluation'   target='_blank'>App link to examine pretrained models</a> used to perform NER without fine tuning</b></h3>
  """, unsafe_allow_html=True)
    st.markdown("""
    <h3 style="font-size:16px; color: #9f9f9f; text-align: center">Github <a href='http://github.com/ajitrajasekharan/unsupervised_NER' target='_blank'>link to same working code </a>(without UI) as separate microservices</h3>
  """, unsafe_allow_html=True)

  except Exception as e:
    print("Some error occurred in main")
    st.exception(e)

if __name__ == "__main__":
   main()