Spaces:
Sleeping
Sleeping
robertselvam
commited on
Commit
•
77de8f5
1
Parent(s):
c0e1099
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import openai
|
3 |
+
import PyPDF2
|
4 |
+
import gradio as gr
|
5 |
+
import docx
|
6 |
+
import re
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
|
9 |
+
class Resume_Overall:
|
10 |
+
def __init__(self):
|
11 |
+
pass
|
12 |
+
|
13 |
+
def extract_text_from_file(self,file_path):
|
14 |
+
# Get the file extension
|
15 |
+
file_extension = os.path.splitext(file_path)[1]
|
16 |
+
|
17 |
+
if file_extension == '.pdf':
|
18 |
+
with open(file_path, 'rb') as file:
|
19 |
+
# Create a PDF file reader object
|
20 |
+
reader = PyPDF2.PdfFileReader(file)
|
21 |
+
|
22 |
+
# Create an empty string to hold the extracted text
|
23 |
+
extracted_text = ""
|
24 |
+
|
25 |
+
# Loop through each page in the PDF and extract the text
|
26 |
+
for page_number in range(reader.getNumPages()):
|
27 |
+
page = reader.getPage(page_number)
|
28 |
+
extracted_text += page.extractText()
|
29 |
+
return extracted_text
|
30 |
+
|
31 |
+
elif file_extension == '.txt':
|
32 |
+
with open(file_path, 'r') as file:
|
33 |
+
# Just read the entire contents of the text file
|
34 |
+
return file.read()
|
35 |
+
|
36 |
+
elif file_extension == '.docx':
|
37 |
+
doc = docx.Document(file_path)
|
38 |
+
text = []
|
39 |
+
for paragraph in doc.paragraphs:
|
40 |
+
text.append(paragraph.text)
|
41 |
+
return '\n'.join(text)
|
42 |
+
|
43 |
+
else:
|
44 |
+
return "Unsupported file type"
|
45 |
+
|
46 |
+
def course_response(self,resume_path):
|
47 |
+
resume_path = resume_path.name
|
48 |
+
resume = self.extract_text_from_file(resume_path)
|
49 |
+
|
50 |
+
|
51 |
+
# Define the prompt or input for the model
|
52 |
+
prompt = f"""Analyze the resume to generate online courses with website links to improve skills following resume delimitted by triple backticks. Generate atmost five courses.
|
53 |
+
result format should be:
|
54 |
+
course:[course].
|
55 |
+
website link:[website link]
|
56 |
+
```{resume}```
|
57 |
+
"""
|
58 |
+
|
59 |
+
# Generate a response from the GPT-3 model
|
60 |
+
response = openai.Completion.create(
|
61 |
+
engine='text-davinci-003',
|
62 |
+
prompt=prompt,
|
63 |
+
max_tokens=200,
|
64 |
+
temperature=0,
|
65 |
+
n=1,
|
66 |
+
stop=None,
|
67 |
+
)
|
68 |
+
|
69 |
+
# Extract the generated text from the API response
|
70 |
+
generated_text = response.choices[0].text.strip()
|
71 |
+
|
72 |
+
return generated_text
|
73 |
+
def summary_response(self,resume_path):
|
74 |
+
resume_path = resume_path.name
|
75 |
+
resume = self.extract_text_from_file(resume_path)
|
76 |
+
|
77 |
+
|
78 |
+
# Define the prompt or input for the model
|
79 |
+
prompt = f"""Analyze the resume to write the summary for following resume delimitted by triple backticks.
|
80 |
+
```{resume}```
|
81 |
+
"""
|
82 |
+
|
83 |
+
# Generate a response from the GPT-3 model
|
84 |
+
response = openai.Completion.create(
|
85 |
+
engine='text-davinci-003',
|
86 |
+
prompt=prompt,
|
87 |
+
max_tokens=200,
|
88 |
+
temperature=0,
|
89 |
+
n=1,
|
90 |
+
stop=None,
|
91 |
+
)
|
92 |
+
|
93 |
+
# Extract the generated text from the API response
|
94 |
+
generated_text = response.choices[0].text.strip()
|
95 |
+
|
96 |
+
return generated_text
|
97 |
+
|
98 |
+
|
99 |
+
def skill_response(self,job_description_path):
|
100 |
+
job_description_path = job_description_path.name
|
101 |
+
resume = self.extract_text_from_file(job_description_path)
|
102 |
+
|
103 |
+
|
104 |
+
# Define the prompt or input for the model
|
105 |
+
prompt = f"""Find Education Gaps in given resume. Find Skills in resume.
|
106 |
+
```{resume}```
|
107 |
+
"""
|
108 |
+
|
109 |
+
# Generate a response from the GPT-3 model
|
110 |
+
response = openai.Completion.create(
|
111 |
+
engine='text-davinci-003', # Choose the GPT-3 engine you want to use
|
112 |
+
prompt=prompt,
|
113 |
+
max_tokens=100, # Set the maximum number of tokens in the generated response
|
114 |
+
temperature=0, # Controls the randomness of the output. Higher values = more random, lower values = more focused
|
115 |
+
n=1, # Generate a single response
|
116 |
+
stop=None, # Specify an optional stop sequence to limit the length of the response
|
117 |
+
)
|
118 |
+
|
119 |
+
# Extract the generated text from the API response
|
120 |
+
generated_text = response.choices[0].text.strip()
|
121 |
+
|
122 |
+
return generated_text
|
123 |
+
|
124 |
+
def _generate_job_list(self, resume: str) -> str:
|
125 |
+
prompt = f"List out perfect job roles for based on resume informations:{resume}"
|
126 |
+
response = openai.Completion.create(
|
127 |
+
engine='text-davinci-003',
|
128 |
+
prompt=prompt,
|
129 |
+
max_tokens=100,
|
130 |
+
temperature=0,
|
131 |
+
n=1,
|
132 |
+
stop=None,
|
133 |
+
)
|
134 |
+
generated_text = response.choices[0].text.strip()
|
135 |
+
return generated_text
|
136 |
+
|
137 |
+
|
138 |
+
def job_list_interface(self, file) -> str:
|
139 |
+
resume_text = self.extract_text_from_file(file.name)
|
140 |
+
|
141 |
+
job_list = self._generate_job_list(resume_text)
|
142 |
+
return job_list
|
143 |
+
def show_file(self,file_path):
|
144 |
+
return file_path.name
|
145 |
+
|
146 |
+
def launch_gradio_interface(self, share: bool = True):
|
147 |
+
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as app:
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column(elem_id="col-container"):
|
151 |
+
gr.HTML("""<center><h1>Resume</h1></center>""")
|
152 |
+
file_output = gr.File(elem_classes="filenameshow")
|
153 |
+
upload_button = gr.UploadButton(
|
154 |
+
"Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"],
|
155 |
+
elem_classes="filenameshow")
|
156 |
+
with gr.TabItem("Designation"):
|
157 |
+
btn = gr.Button(value="Submit")
|
158 |
+
output_text = gr.Textbox(label="Designation List")
|
159 |
+
with gr.TabItem("Summarized"):
|
160 |
+
analyse = gr.Button("Analyze")
|
161 |
+
summary_result = gr.Textbox(label="Summarized",lines=8)
|
162 |
+
with gr.TabItem("Skills and Education Gaps"):
|
163 |
+
analyse_resume = gr.Button("Analyze Resume")
|
164 |
+
result = gr.Textbox(label="Skills and Education Gaps",lines=8)
|
165 |
+
with gr.TabItem("Course"):
|
166 |
+
course_analyse = gr.Button("Find Courses")
|
167 |
+
course_result = gr.Textbox(label="Suggested Cources",lines=8)
|
168 |
+
|
169 |
+
upload_button.upload(self.show_file,upload_button,file_output)
|
170 |
+
course_analyse.click(self.course_response, [upload_button], course_result)
|
171 |
+
analyse_resume.click(self.skill_response, [upload_button], result)
|
172 |
+
btn.click(self.job_list_interface, upload_button, output_text)
|
173 |
+
analyse.click(self.summary_response, [upload_button], summary_result)
|
174 |
+
|
175 |
+
app.launch(debug=True)
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
resume_overall = Resume_Overall()
|
179 |
+
resume_overall.launch_gradio_interface()
|