File size: 1,311 Bytes
d997e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from typing import List
from transformers import AutoTokenizer, AutoModel
import torch
import os
import numpy as np

class EmbeddingsProcessor:
    """
    Class for processing text to obtain embeddings using a transformer model.
    """
    def __init__(self, model_name: str):
        """
        Initialize the EmbeddingsProcessor with a pre-trained model.

        Args:
            model_name (str): The name of the pre-trained model to use for generating embeddings.
        """
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name).to('cpu')  # Change 'cuda' to 'cpu'

    def get_embeddings(self, texts: List[str]) -> np.ndarray:
        """
        Generate embeddings for a list of texts.

        Args:
            texts (List[str]): A list of text strings for which to generate embeddings.

        Returns:
            np.ndarray: A NumPy array of embeddings for the provided texts.
        """
        encoded_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
        encoded_input = {k: v.to('cpu') for k, v in encoded_input.items()}  # Ensure all tensors are on CPU
        model_output = self.model(**encoded_input)
        return model_output.last_hidden_state.mean(dim=1).detach().numpy()