Spaces:
Sleeping
Sleeping
import streamlit as st | |
from defaults import ( | |
PROJECT_NAME, | |
ARGILLA_SPACE_REPO_ID, | |
DATASET_REPO_ID, | |
ARGILLA_URL, | |
PROJECT_SPACE_REPO_ID, | |
DIBT_PARENT_APP_URL, | |
) | |
from utils import project_sidebar | |
st.set_page_config("Domain Data Grower", page_icon="🧑🌾") | |
project_sidebar() | |
if PROJECT_NAME == "DEFAULT_DOMAIN": | |
st.warning( | |
"Please set up the project configuration in the parent app before proceeding." | |
) | |
st.stop() | |
st.header("🧑🌾 Domain Data Grower") | |
st.divider() | |
st.markdown( | |
""" | |
## 🌱 Create a dataset seed for aligning models to a specific domain | |
This app helps you create a dataset seed for building diverse domain-specific datasets for aligning models. | |
Alignment datasets are used to fine-tune models to a specific domain or task, but as yet, there's a shortage of diverse datasets for this purpose. | |
""" | |
) | |
st.markdown( | |
""" | |
## 🚜 How it works | |
You can create a dataset seed by defining the domain expertise, perspectives, topics, and examples for your domain-specific dataset. | |
The dataset seed is then used to generate synthetic data for training a language model. | |
""" | |
) | |
st.markdown( | |
""" | |
## 🗺️ The process | |
### Step 1: ~~Setup the project~~ | |
~~Define the project details, including the project name, domain, and API credentials. Create Dataset Repo on the Hub.~~ | |
""" | |
) | |
st.link_button("🚀 ~~Setup Project via the parent app~~", DIBT_PARENT_APP_URL) | |
st.markdown( | |
""" | |
### Step 2: Describe the Domain | |
Define the domain expertise, perspectives, topics, and examples for your domain-specific dataset. | |
You can collaborate with domain experts to define the domain expertise and perspectives. | |
""" | |
) | |
st.page_link( | |
"pages/2_👩🏼🔬 Describe Domain.py", | |
label="Describe Domain", | |
icon="👩🏼🔬", | |
) | |
st.markdown( | |
""" | |
### Step 3: Generate Synthetic Data | |
Use distilabel to generate synthetic data for your domain-specific dataset. | |
You can run the pipeline locally or in this space to generate synthetic data. | |
""" | |
) | |
st.page_link( | |
"pages/3_🌱 Generate Dataset.py", | |
label="Generate Dataset", | |
icon="🌱", | |
) | |
st.markdown( | |
""" | |
### Step 4: Review the Dataset | |
Use Argilla to review the generated synthetic data and provide feedback on the quality of the data. | |
""" | |
) | |
st.link_button("🔍 Review the dataset in Argilla", ARGILLA_URL) | |