Spaces:
Runtime error
Runtime error
File size: 9,306 Bytes
11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba d1ddda1 11edfba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from PIL import Image
from typing import Union
import random
import numpy as np
import os
import time
from models import make_image_controlnet, make_inpainting
from segmentation import segment_image
from config import (
HEIGHT,
WIDTH,
POS_PROMPT,
NEG_PROMPT,
COLOR_MAPPING,
map_colors,
map_colors_rgb,
)
from palette import COLOR_MAPPING_CATEGORY
from preprocessing import preprocess_seg_mask, get_image, get_mask
from explanation import (
make_inpainting_explanation,
make_regeneration_explanation,
make_segmentation_explanation,
)
from colors import INTERIOR
# wide layout
st.set_page_config(layout="wide")
def on_upload() -> None:
"""Upload image to the canvas."""
if (
"input_image" in st.session_state
and st.session_state["input_image"] is not None
):
image = Image.open(st.session_state["input_image"]).convert("RGB")
st.session_state["initial_image"] = image
if "seg" in st.session_state:
del st.session_state["seg"]
if "unique_colors" in st.session_state:
del st.session_state["unique_colors"]
if "output_image" in st.session_state:
del st.session_state["output_image"]
def make_image_row(image_0, image_1):
col_0, col_1 = st.columns(2)
with col_0:
st.image(image_0, use_column_width=True)
with col_1:
st.image(image_1, use_column_width=True)
def check_reset_state() -> bool:
"""Check whether the UI elements need to be reset
Returns:
bool: True if the UI elements need to be reset, False otherwise
"""
if "reset_canvas" in st.session_state and st.session_state["reset_canvas"]:
st.session_state["reset_canvas"] = False
return True
st.session_state["reset_canvas"] = False
return False
def move_image(
source: Union[str, Image.Image],
dest: str,
rerun: bool = True,
remove_state: bool = True,
) -> None:
"""Move image from source to destination.
Args:
source (Union[str, Image.Image]): source image
dest (str): destination image location
rerun (bool, optional): rerun streamlit. Defaults to True.
remove_state (bool, optional): remove the canvas state. Defaults to True.
"""
source_image = (
source if isinstance(source, Image.Image) else st.session_state[source]
)
if remove_state:
st.session_state["reset_canvas"] = True
if "seg" in st.session_state:
del st.session_state["seg"]
if "unique_colors" in st.session_state:
del st.session_state["unique_colors"]
st.session_state[dest] = source_image
st.session_state["dest"] = source_image
if rerun:
st.experimental_rerun()
def on_change_radio() -> None:
"""Reset the UI elements when the radio button is changed."""
st.session_state["reset_canvas"] = True
def make_canvas_dict(canvas_color, brush, paint_mode, _reset_state):
canvas_dict = dict(
fill_color=canvas_color,
stroke_color=canvas_color,
background_color="#FFFFFF",
background_image=st.session_state["initial_image"]
if "initial_image" in st.session_state
else None,
stroke_width=brush,
initial_drawing={"version": "4.4.0", "objects": []} if _reset_state else None,
update_streamlit=True,
height=512,
width=512,
drawing_mode=paint_mode,
key="canvas",
)
return canvas_dict
def make_output_image():
st.write("#### After")
output_images = st.session_state["output_images"] if st.session_state["output_images"] else []
for output_image in output_images:
if isinstance(output_image, np.ndarray):
output_image = Image.fromarray(output_image)
if isinstance(output_image, Image.Image):
output_image = output_image.resize((512, 512))
if len(output_images) >= 1:
st.image(output_images[0], width=512)
else:
st.spinner()
if len(output_images) >= 2:
st.image(output_images[1], width=512)
else:
st.spinner()
if len(output_images) >= 3:
st.image(output_images[2], width=512)
else:
st.spinner()
if len(output_images) >= 4:
st.image(output_images[3], width=512)
else:
st.spinner()
def generate():
image = get_image()
segmentation = st.session_state["seg"]
mask = np.zeros_like(segmentation)
interior = list(INTERIOR.values())
print(interior)
for color in st.session_state["unique_colors"]:
print(map_colors_rgb(color))
# 壁や床を変えると違う家になってしまう
if map_colors_rgb(color) in interior:
continue
# if the color is in the segmentation, set mask to 1
mask[np.where((segmentation == color).all(axis=2))] = 1
positive_prompt = "a photograph of a room, interior design, 4k, high resolution"
negative_prompt = "lowres, watermark, banner, logo, watermark, contactinfo, text, deformed, blurry, blur, out of focus, out of frame, surreal, ugly"
with st.spinner(text="生成中…"):
st.session_state["output_images"] = []
result_image = make_image_controlnet(
image=image,
mask_image=mask,
controlnet_conditioning_image=segmentation,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=random.randint(0, 100000), # nosec
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state["output_images"].append(result_image)
result_image = make_image_controlnet(
image=image,
mask_image=mask,
controlnet_conditioning_image=segmentation,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=random.randint(0, 100000), # nosec
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state["output_images"].append(result_image)
result_image = make_image_controlnet(
image=image,
mask_image=mask,
controlnet_conditioning_image=segmentation,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=random.randint(0, 100000), # nosec
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state["output_images"].append(result_image)
result_image = make_image_controlnet(
image=image,
mask_image=mask,
controlnet_conditioning_image=segmentation,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=random.randint(0, 100000), # nosec
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state["output_images"].append(result_image)
def make_editing_canvas(canvas_color, brush, _reset_state, generation_mode, paint_mode):
st.write("#### Before")
canvas_dict = make_canvas_dict(
canvas_color=canvas_color,
paint_mode=paint_mode,
brush=brush,
_reset_state=_reset_state,
)
canvas = st_canvas(
**canvas_dict,
)
if "seg" not in st.session_state:
with st.spinner(text="生成中…"):
image = get_image()
real_seg = np.array(segment_image(Image.fromarray(image)))
st.session_state["seg"] = real_seg
if "unique_colors" not in st.session_state:
real_seg = st.session_state["seg"]
unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0)
unique_colors = [tuple(color) for color in unique_colors]
st.session_state["unique_colors"] = unique_colors
# chosen_colors = st.multiselect(
# label="Choose which concepts you want to regenerate in the image",
# options=st.session_state['unique_colors'],
# key='chosen_colors',
# default=st.session_state['unique_colors'],
# format_func=map_colors_rgb,
# )
if "output_images" not in st.session_state:
generate()
else:
if st.button("再生成"):
generate()
def main():
# center text
st.write("## Interior AI", unsafe_allow_html=True)
input_image = st.file_uploader(
"部屋の画像を選択してください", type=["png", "jpg"], key="input_image", on_change=on_upload
)
generation_mode = "Regenerate"
color_chooser = "rgba(0, 0, 0, 0.0)"
paint_mode = "freedraw"
brush = 0
_reset_state = check_reset_state()
if input_image:
col1, col2 = st.columns(2)
with col1:
make_editing_canvas(
canvas_color=color_chooser,
brush=brush,
_reset_state=_reset_state,
generation_mode=generation_mode,
paint_mode=paint_mode,
)
with col2:
make_output_image()
if __name__ == "__main__":
main()
|