import os import queries import pinecone from dotenv import load_dotenv, find_dotenv from langchain.embeddings import OpenAIEmbeddings from langchain.llms import OpenAI import streamlit as st import openai import time from dotenv import load_dotenv,find_dotenv,dotenv_values load_dotenv(find_dotenv(),override=True) # Set secrets # PINECONE_ENVIRONMENT=db.secrets.get('PINECONE_ENVIRONMENT') # PINECONE_API_KEY=db.secrets.get('PINECONE_API_KEY') PINECONE_ENVIRONMENT=os.getenv('PINECONE_ENVIRONMENT') PINECONE_API_KEY=os.getenv('PINECONE_API_KEY') # Set the page title st.set_page_config( page_title='Aerospace Chatbot: AMS w/Langchain', ) st.title('Aerospace Mechanisms Chatbot') with st.expander('''What's under the hood?'''): st.markdown(''' This chatbot will look up from all Aerospace Mechanism Symposia in the following location: https://github.com/dsmueller3760/aerospace_chatbot/tree/main/data/AMS * Source code: https://github.com/dsmueller3760/aerospace_chatbot/blob/main/scripts/setup_page_langchain.py * Uses custom langchain functions with QA retrieval: https://js.langchain.com/docs/modules/chains/popular/chat_vector_db_legacy * All prompts will query entire database unless 'filter response with last received sources' is activated. * **Repsonse time ~10 seconds per prompt**. ''') filter_toggle=st.checkbox('Filter response with last received sources?') # Add a sidebar for input options st.title('Input') # Add input fields in the sidebar st.sidebar.title('Input options') output_level = st.sidebar.selectbox('Level of Output', ['Concise', 'Detailed'], index=1) k = st.sidebar.number_input('Number of items per prompt', min_value=1, step=1, value=4) search_type = st.sidebar.selectbox('Search Type', ['similarity', 'mmr'], index=1) temperature = st.sidebar.slider('Temperature', min_value=0.0, max_value=2.0, value=0.0, step=0.1) verbose = st.sidebar.checkbox('Verbose output') chain_type = st.sidebar.selectbox('Chain Type', ['stuff', 'map_reduce'], index=0) # Vector databases st.sidebar.title('Vector database') index_type=st.sidebar.selectbox('Index type', ['Pinecone'], index=0) index_name=st.sidebar.selectbox('Index name', ['canopy--ams'], index=0) # Embeddings st.sidebar.title('Embeddings') embedding_type=st.sidebar.selectbox('Embedding type', ['Openai'], index=0) embedding_name=st.sidebar.selectbox('Embedding name', ['text-embedding-ada-002'], index=0) # Add a section for secret keys st.sidebar.title('Secret keys') OPENAI_API_KEY = st.sidebar.text_input('OpenAI API Key', type='password') # Pinecone pinecone.init( api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT ) if OPENAI_API_KEY: openai.api_key = OPENAI_API_KEY embeddings_model = OpenAIEmbeddings(model=embedding_name,openai_api_key=OPENAI_API_KEY) # Set up chat history qa_model_obj = st.session_state.get('qa_model_obj',[]) message_id = st.session_state.get('message_id', 0) if 'messages' not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message['role']): st.markdown(message['content']) # Process some items if output_level == 'Concise': out_token = 50 else: out_token = 516 # Define LLM parameters and qa model object llm = OpenAI(temperature=temperature, openai_api_key=OPENAI_API_KEY, max_tokens=out_token) qa_model_obj=queries.QA_Model(index_name, embeddings_model, llm, k, search_type, verbose, filter_arg=False) # Display assistant response in chat message container if prompt := st.chat_input('Prompt here'): st.session_state.messages.append({'role': 'user', 'content': prompt}) with st.chat_message('user'): st.markdown(prompt) with st.chat_message('assistant'): message_placeholder = st.empty() with st.status('Generating response...') as status: t_start=time.time() # Process some items if output_level == 'Concise': out_token = 50 else: out_token = 516 # Define LLM parameters and qa model object llm = OpenAI(temperature=temperature, openai_api_key=OPENAI_API_KEY, max_tokens=out_token) message_id += 1 st.write('Message: '+str(message_id)) if message_id>1: qa_model_obj=st.session_state['qa_model_obj'] qa_model_obj.update_model(llm, k=k, search_type=search_type, verbose=verbose, filter_arg=filter_toggle) if filter_toggle: filter_list = list(set(item['source'] for item in qa_model_obj.sources[-1])) filter_items=[] for item in filter_list: filter_item={'source': item} filter_items.append(filter_item) filter={'$or':filter_items} st.write('Searching vector database, generating prompt...') qa_model_obj.query_docs(prompt) ai_response=qa_model_obj.result['answer'] message_placeholder.markdown(ai_response) t_delta=time.time() - t_start status.update(label='Prompt generated in '+"{:10.3f}".format(t_delta)+' seconds', state='complete', expanded=False) st.session_state['qa_model_obj'] = qa_model_obj st.session_state['message_id'] = message_id st.session_state.messages.append({'role': 'assistant', 'content': ai_response}) else: st.warning('No API key found. Add your API key in the sidebar under Secret Keys. Find it or create one here: https://platform.openai.com/api-keys') st.info('Your API-key is not stored in any form by this app. However, for transparency it is recommended to delete your API key once used.')