|
import os |
|
import queries |
|
import pinecone |
|
from dotenv import load_dotenv, find_dotenv |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.llms import OpenAI |
|
import streamlit as st |
|
import openai |
|
import time |
|
|
|
from dotenv import load_dotenv,find_dotenv,dotenv_values |
|
load_dotenv(find_dotenv(),override=True) |
|
|
|
|
|
|
|
|
|
PINECONE_ENVIRONMENT=os.getenv('PINECONE_ENVIRONMENT') |
|
PINECONE_API_KEY=os.getenv('PINECONE_API_KEY') |
|
|
|
|
|
st.set_page_config( |
|
page_title='Aerospace Chatbot: AMS w/Langchain', |
|
) |
|
st.title('Aerospace Mechanisms Chatbot') |
|
with st.expander('''What's under the hood?'''): |
|
st.markdown(''' |
|
This chatbot will look up from all Aerospace Mechanism Symposia in the following location: https://github.com/dsmueller3760/aerospace_chatbot/tree/main/data/AMS |
|
* Source code: https://github.com/dsmueller3760/aerospace_chatbot/blob/main/scripts/setup_page_langchain.py |
|
* Uses custom langchain functions with QA retrieval: https://js.langchain.com/docs/modules/chains/popular/chat_vector_db_legacy |
|
* All prompts will query entire database unless 'filter response with last received sources' is activated. |
|
* **Repsonse time ~10 seconds per prompt**. |
|
''') |
|
filter_toggle=st.checkbox('Filter response with last received sources?') |
|
|
|
|
|
st.title('Input') |
|
|
|
|
|
st.sidebar.title('Input options') |
|
output_level = st.sidebar.selectbox('Level of Output', ['Concise', 'Detailed'], index=1) |
|
k = st.sidebar.number_input('Number of items per prompt', min_value=1, step=1, value=4) |
|
search_type = st.sidebar.selectbox('Search Type', ['similarity', 'mmr'], index=1) |
|
temperature = st.sidebar.slider('Temperature', min_value=0.0, max_value=2.0, value=0.0, step=0.1) |
|
verbose = st.sidebar.checkbox('Verbose output') |
|
chain_type = st.sidebar.selectbox('Chain Type', ['stuff', 'map_reduce'], index=0) |
|
|
|
|
|
st.sidebar.title('Vector database') |
|
index_type=st.sidebar.selectbox('Index type', ['Pinecone'], index=0) |
|
index_name=st.sidebar.selectbox('Index name', ['canopy--ams'], index=0) |
|
|
|
|
|
st.sidebar.title('Embeddings') |
|
embedding_type=st.sidebar.selectbox('Embedding type', ['Openai'], index=0) |
|
embedding_name=st.sidebar.selectbox('Embedding name', ['text-embedding-ada-002'], index=0) |
|
|
|
|
|
st.sidebar.title('Secret keys') |
|
OPENAI_API_KEY = st.sidebar.text_input('OpenAI API Key', type='password') |
|
|
|
|
|
pinecone.init( |
|
api_key=PINECONE_API_KEY, |
|
environment=PINECONE_ENVIRONMENT |
|
) |
|
|
|
if OPENAI_API_KEY: |
|
openai.api_key = OPENAI_API_KEY |
|
embeddings_model = OpenAIEmbeddings(model=embedding_name,openai_api_key=OPENAI_API_KEY) |
|
|
|
|
|
qa_model_obj = st.session_state.get('qa_model_obj',[]) |
|
message_id = st.session_state.get('message_id', 0) |
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
for message in st.session_state.messages: |
|
with st.chat_message(message['role']): |
|
st.markdown(message['content']) |
|
|
|
|
|
if output_level == 'Concise': |
|
out_token = 50 |
|
else: |
|
out_token = 516 |
|
|
|
|
|
llm = OpenAI(temperature=temperature, |
|
openai_api_key=OPENAI_API_KEY, |
|
max_tokens=out_token) |
|
qa_model_obj=queries.QA_Model(index_name, |
|
embeddings_model, |
|
llm, |
|
k, |
|
search_type, |
|
verbose, |
|
filter_arg=False) |
|
|
|
|
|
if prompt := st.chat_input('Prompt here'): |
|
st.session_state.messages.append({'role': 'user', 'content': prompt}) |
|
with st.chat_message('user'): |
|
st.markdown(prompt) |
|
with st.chat_message('assistant'): |
|
message_placeholder = st.empty() |
|
|
|
with st.status('Generating response...') as status: |
|
t_start=time.time() |
|
|
|
|
|
if output_level == 'Concise': |
|
out_token = 50 |
|
else: |
|
out_token = 516 |
|
|
|
|
|
llm = OpenAI(temperature=temperature, |
|
openai_api_key=OPENAI_API_KEY, |
|
max_tokens=out_token) |
|
|
|
message_id += 1 |
|
st.write('Message: '+str(message_id)) |
|
|
|
if message_id>1: |
|
qa_model_obj=st.session_state['qa_model_obj'] |
|
qa_model_obj.update_model(llm, |
|
k=k, |
|
search_type=search_type, |
|
verbose=verbose, |
|
filter_arg=filter_toggle) |
|
if filter_toggle: |
|
filter_list = list(set(item['source'] for item in qa_model_obj.sources[-1])) |
|
filter_items=[] |
|
for item in filter_list: |
|
filter_item={'source': item} |
|
filter_items.append(filter_item) |
|
filter={'$or':filter_items} |
|
|
|
st.write('Searching vector database, generating prompt...') |
|
qa_model_obj.query_docs(prompt) |
|
ai_response=qa_model_obj.result['answer'] |
|
message_placeholder.markdown(ai_response) |
|
t_delta=time.time() - t_start |
|
status.update(label='Prompt generated in '+"{:10.3f}".format(t_delta)+' seconds', state='complete', expanded=False) |
|
|
|
st.session_state['qa_model_obj'] = qa_model_obj |
|
st.session_state['message_id'] = message_id |
|
st.session_state.messages.append({'role': 'assistant', 'content': ai_response}) |
|
|
|
else: |
|
st.warning('No API key found. Add your API key in the sidebar under Secret Keys. Find it or create one here: https://platform.openai.com/api-keys') |
|
st.info('Your API-key is not stored in any form by this app. However, for transparency it is recommended to delete your API key once used.') |