File size: 12,021 Bytes
48a66db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import re
import logging
import shutil
import string

import pinecone
import chromadb

import json, jsonlines
from tqdm import tqdm

from langchain_community.vectorstores import Pinecone
from langchain_community.vectorstores import Chroma

from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter

from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings import VoyageEmbeddings

from langchain_community.document_loaders import PyPDFLoader
from langchain_core.documents import Document as lancghain_Document

from ragatouille import RAGPretrainedModel

from dotenv import load_dotenv,find_dotenv
load_dotenv(find_dotenv(),override=True)

# Set secrets from environment file
OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
VOYAGE_API_KEY=os.getenv('VOYAGE_API_KEY')
PINECONE_API_KEY=os.getenv('PINECONE_API_KEY')
HUGGINGFACEHUB_API_TOKEN=os.getenv('HUGGINGFACEHUB_API_TOKEN') 

def chunk_docs(docs,
               chunk_method='tiktoken_recursive',
               file=None,
               chunk_size=500,
               chunk_overlap=0,
               use_json=False):
    docs_out=[]
    if file:
        logging.info('Jsonl file to be used: '+file)
    if use_json and os.path.exists(file):
            logging.info('Jsonl file found, using this instead of parsing docs.')
            with open(file, "r") as file_in:
                file_data = [json.loads(line) for line in file_in]
            # Process the file data and put it into the same format as docs_out
            for line in file_data:
                doc_temp = lancghain_Document(page_content=line['page_content'],
                                              source=line['metadata']['source'],
                                              page=line['metadata']['page'],
                                              metadata=line['metadata'])
                if has_meaningful_content(doc_temp):
                    docs_out.append(doc_temp)
            logging.info('Parsed: '+file)
            logging.info('Number of entries: '+str(len(docs_out)))
            logging.info('Sample entries:')
            logging.info(str(docs_out[0]))
            logging.info(str(docs_out[-1]))
    else:
        logging.info('No jsonl found. Reading and parsing docs.')
        logging.info('Chunk size (tokens): '+str(chunk_size))
        logging.info('Chunk overlap (tokens): '+str(chunk_overlap))
        for doc in tqdm(docs,desc='Reading and parsing docs'):
            logging.info('Parsing: '+doc)
            loader = PyPDFLoader(doc)
            data = loader.load_and_split()

            if chunk_method=='tiktoken_recursive':
                text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
            else:
                raise NotImplementedError
            pages = text_splitter.split_documents(data)

            # Tidy up text by removing unnecessary characters
            for page in pages:
                page.metadata['source']=os.path.basename(page.metadata['source'])   # Strip path
                page.metadata['page']=int(page.metadata['page'])+1   # Pages are 0 based, update
                page.page_content=re.sub(r"(\w+)-\n(\w+)", r"\1\2", page.page_content)   # Merge hyphenated words
                page.page_content = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", page.page_content.strip())  # Fix newlines in the middle of sentences
                page.page_content = re.sub(r"\n\s*\n", "\n\n", page.page_content)   # Remove multiple newlines
                # Add metadata to the end of the page content, some RAG models don't have metadata.
                page.page_content += str(page.metadata)
                doc_temp=lancghain_Document(page_content=page.page_content,
                                            source=page.metadata['source'],
                                            page=page.metadata['page'],
                                            metadata=page.metadata)
                if has_meaningful_content(page):
                    docs_out.append(doc_temp)
        logging.info('Parsed: '+doc)
        logging.info('Sample entries:')
        logging.info(str(docs_out[0]))
        logging.info(str(docs_out[-1]))
        if file:
            # Write to a jsonl file, save it.
            logging.info('Writing to jsonl file: '+file)
            with jsonlines.open(file, mode='w') as writer:
                for doc in docs_out: 
                    writer.write(doc.dict())
            logging.info('Written: '+file)
    return docs_out
def load_docs(index_type,
              docs,
              query_model,
              index_name=None,
              chunk_method='tiktoken_recursive',
              chunk_size=500,
              chunk_overlap=0,
              clear=False,
              use_json=False,
              file=None,
              batch_size=50):
    """
    Loads PDF documents. If index_name is blank, it will return a list of the data (texts). If it is a name of a pinecone storage, it will return the vector_store.    
    """
    # Chunk docs
    docs_out=chunk_docs(docs,
                        chunk_method=chunk_method,
                        file=file,
                        chunk_size=chunk_size,
                        chunk_overlap=chunk_overlap,
                        use_json=use_json)
    # Initialize client
    db_path='../db/'
    if index_name:
        if index_type=="Pinecone":
            # Import and initialize Pinecone client
            pinecone.init(
                api_key=PINECONE_API_KEY
            )
            # Find the existing index, clear for new start
            if clear:
                try:
                    pinecone.describe_index(index_name)
                except:
                    raise Exception(f"Cannot clear index {index_name} because it does not exist.")
                index=pinecone.Index(index_name)
                index.delete(delete_all=True) # Clear the index first, then upload
                logging.info('Cleared database '+index_name)
            # Upsert docs
            try:
                pinecone.describe_index(index_name)
            except:
                logging.info(f"Index {index_name} does not exist. Creating new index.")
                logging.info('Size of embedding used: '+str(embedding_size(query_model)))  # TODO: set this to be backed out of the embedding size
                pinecone.create_index(index_name,dimension=embedding_size(query_model))
                logging.info(f"Index {index_name} created. Adding {len(docs_out)} entries to index.")
                pass
            else:
                logging.info(f"Index {index_name} exists. Adding {len(docs_out)} entries to index.")
            index = pinecone.Index(index_name)
            vectorstore = Pinecone(index, query_model, "page_content") # Set the vector store to calculate embeddings on page_content
            vectorstore = batch_upsert(index_type,
                                       vectorstore,
                                       docs_out,
                                       batch_size=batch_size)
        elif index_type=="ChromaDB":
            # Upsert docs. Defaults to putting this in the ../db directory
            logging.info(f"Creating new index {index_name}.")
            persistent_client = chromadb.PersistentClient(path=db_path+'/chromadb')            
            vectorstore = Chroma(client=persistent_client,
                                 collection_name=index_name,
                                 embedding_function=query_model)
            logging.info(f"Index {index_name} created. Adding {len(docs_out)} entries to index.")
            vectorstore = batch_upsert(index_type,
                                       vectorstore,
                                       docs_out,
                                       batch_size=batch_size)
            logging.info("Documents upserted to f{index_name}.")
            # Test query
            test_query = vectorstore.similarity_search('What are examples of aerosapce adhesives to avoid?')
            logging.info('Test query: '+str(test_query))
            if not test_query:
                raise ValueError("Chroma vector database is not configured properly. Test query failed.")       
        elif index_type=="RAGatouille":
            logging.info(f'Setting up RAGatouille model {query_model}')
            vectorstore = RAGPretrainedModel.from_pretrained(query_model)
            logging.info('RAGatouille model set: '+str(vectorstore))

            # Create an index from the vectorstore.
            docs_out_colbert = [doc.page_content for doc in docs_out]
            if chunk_size>500:
                raise ValueError("RAGatouille cannot handle chunks larger than 500 tokens. Reduce token count.")
            vectorstore.index(
                collection=docs_out_colbert,
                index_name=index_name,
                max_document_length=chunk_size,
                overwrite_index=True,
                split_documents=True,
            )
            logging.info(f"Index created: {vectorstore}")

            # Move the directory to the db folder
            logging.info(f"Moving RAGatouille index to {db_path}")
            ragatouille_path = os.path.join(db_path, '.ragatouille')
            if os.path.exists(ragatouille_path):
                shutil.rmtree(ragatouille_path)
                logging.info(f"RAGatouille index deleted from {ragatouille_path}")
            shutil.move('./.ragatouille', db_path)
            logging.info(f"RAGatouille index created in {db_path}:"+str(vectorstore))

    # Return vectorstore or docs
    if index_name:
        return vectorstore
    else:
        return docs_out
def delete_index(index_type,index_name):
    """
    Deletes an existing Pinecone index with the given index_name.
    """
    if index_type=="Pinecone":
        # Import and initialize Pinecone client
        pinecone.init(
            api_key=PINECONE_API_KEY
        )
        try:
            pinecone.describe_index(index_name)
            logging.info(f"Index {index_name} exists.")
        except:
            raise Exception(f"Index {index_name} does not exist, cannot delete.")
        else:
            pinecone.delete_index(index_name)
            logging.info(f"Index {index_name} deleted.")
    elif index_type=="ChromaDB":
        # Delete existing collection
        logging.info(f"Deleting index {index_name}.")
        persistent_client = chromadb.PersistentClient(path='../db/chromadb')  
        persistent_client.delete_collection(name=index_name)  
        logging.info("Index deleted.")
    elif index_type=="RAGatouille":
            raise NotImplementedError
def batch_upsert(index_type,vectorstore,docs_out,batch_size=50):
    # Batch insert the chunks into the vector store
    for i in range(0, len(docs_out), batch_size):
        chunk_batch = docs_out[i:i + batch_size]
        if index_type=="Pinecone":
            vectorstore.add_documents(chunk_batch)
        elif index_type=="ChromaDB":
            vectorstore.add_documents(chunk_batch)  # Happens to be same for chroma/pinecone, leaving if statement just in case
    return vectorstore
def has_meaningful_content(page):
    """
    Test whether the page has more than 30% words and is more than 5 words.
    """
    text=page.page_content
    num_words = len(text.split())
    alphanumeric_pct = sum(c.isalnum() for c in text) / len(text)
    if num_words < 5 or alphanumeric_pct < 0.3:
        return False
    else:
        return True
def embedding_size(embedding_model):
    """
    Returns the embedding size of the model.
    """
    if isinstance(embedding_model,OpenAIEmbeddings):
        return 1536 # https://platform.openai.com/docs/models/embeddings, test-embedding-ada-002
    elif isinstance(embedding_model,VoyageEmbeddings):
        return 1024 # https://docs.voyageai.com/embeddings/, voyage-02
    else:
        raise NotImplementedError