import gradio as gr import requests from huggingface_hub import hf_hub_download import torch from PIL import Image import numpy as np # Mengunduh model dari Hugging Face model_path = hf_hub_download(repo_id="ahmadalfian/fruits_vegetables_classifier", filename="resnet50_finetuned.pth") # Menginisialisasi model class FruitVegetableClassifier(torch.nn.Module): def __init__(self): super(FruitVegetableClassifier, self).__init__() self.model = torch.nn.Sequential( torch.load(model_path, map_location=torch.device('cpu')) # Memastikan dimuat di CPU ) self.model.eval() def forward(self, x): return self.model(x) model = FruitVegetableClassifier() # Fungsi untuk memprediksi kelas def predict(image): # Proses gambar di sini (ubah ukuran, normalisasi, dll.) image = image.convert("RGB") image = image.resize((224, 224)) # Resize ke ukuran yang diharapkan model image_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float().unsqueeze(0) # Ubah menjadi tensor with torch.no_grad(): outputs = model(image_tensor) predictions = outputs.argmax(dim=1) return predictions.item() # Fungsi untuk mengambil informasi nutrisi def get_nutritional_info(food): api_key = "3pm2NGZzYongVN1gRjnroVLUpsHC8rKWJFyx5moq" url = "https://api.nal.usda.gov/fdc/v1/foods/search" params = { "query": food, "pageSize": 5, "api_key": api_key } response = requests.get(url, params=params) data = response.json() if "foods" in data and len(data["foods"]) > 0: nutrients_totals = { "Energy": 0, "Carbohydrate, by difference": 0, "Fiber, total dietary": 0, "Vitamin C, total ascorbic acid": 0 } item_count = len(data["foods"]) for food in data["foods"]: for nutrient in food['foodNutrients']: nutrient_name = nutrient['nutrientName'] nutrient_value = nutrient['value'] if nutrient_name in nutrients_totals: nutrients_totals[nutrient_name] += nutrient_value average_nutrients = {name: total / item_count for name, total in nutrients_totals.items()} return average_nutrients else: return None # Fungsi utama Gradio def classify_and_get_nutrition(image): predicted_class_idx = predict(image) class_labels = [ 'apple', 'banana', 'beetroot', 'bell pepper', 'cabbage', 'capsicum', 'carrot', 'cauliflower', 'chilli pepper', 'corn', 'cucumber', 'eggplant', 'garlic', 'ginger', 'grapes', 'jalepeno', 'kiwi', 'lemon', 'lettuce', 'mango', 'onion', 'orange', 'paprika', 'pear', 'peas', 'pineapple', 'pomegranate', 'potato', 'raddish', 'soy beans', 'spinach', 'sweetcorn', 'sweetpotato', 'tomato', 'turnip', 'watermelon' ] predicted_label = class_labels[predicted_class_idx] nutrisi = get_nutritional_info(predicted_label) if nutrisi: return { "Predicted Class": predicted_label, "Energy (kcal)": nutrisi["Energy"], "Carbohydrates (g)": nutrisi["Carbohydrate, by difference"], "Fiber (g)": nutrisi["Fiber, total dietary"], "Vitamin C (mg)": nutrisi["Vitamin C, total ascorbic acid"] } else: return { "Predicted Class": predicted_label, "Nutritional Information": "Not Found" } # Antarmuka Gradio iface = gr.Interface( fn=classify_and_get_nutrition, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Fruits and Vegetables Classifier", description="Upload an image of a fruit or vegetable to classify and get its nutritional information." ) iface.launch()