Spaces:
Sleeping
Sleeping
ahmadalfian
commited on
Commit
•
f00a6e8
1
Parent(s):
b5bf504
Upload 3 files
Browse files- best.pt +3 -0
- main.py +58 -0
- requirements.txt +5 -0
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97f016ba6a0fede42dfe3cadc4b0c0fcead6646fa8136e3015f65ec3ab84f8ae
|
3 |
+
size 5621807
|
main.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
from ultralytics import YOLO
|
5 |
+
|
6 |
+
# Muat model YOLO
|
7 |
+
model = YOLO('best.pt') # Pastikan path ini benar
|
8 |
+
|
9 |
+
# Fungsi untuk melakukan deteksi jerawat
|
10 |
+
def detect_acne(image):
|
11 |
+
# Convert image to NumPy array
|
12 |
+
img_np = np.array(image)
|
13 |
+
|
14 |
+
# Deteksi jerawat menggunakan model YOLO
|
15 |
+
results = model.predict(source=img_np, imgsz=640)
|
16 |
+
|
17 |
+
# Menggambar kotak deteksi di gambar asli
|
18 |
+
img_np_copy = img_np.copy() # Buat salinan gambar
|
19 |
+
img_pil = Image.fromarray(img_np_copy)
|
20 |
+
draw = ImageDraw.Draw(img_pil)
|
21 |
+
|
22 |
+
for result in results:
|
23 |
+
boxes = result.boxes
|
24 |
+
if boxes is not None and len(boxes.xyxy) > 0:
|
25 |
+
for i, box in enumerate(boxes.xyxy):
|
26 |
+
x1, y1, x2, y2 = box[:4]
|
27 |
+
conf = boxes.conf[i] if boxes.conf is not None and len(boxes.conf) > i else None
|
28 |
+
|
29 |
+
# Menggambar kotak di gambar asli dengan warna merah
|
30 |
+
draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2)
|
31 |
+
|
32 |
+
if conf is not None:
|
33 |
+
# Menambahkan label dengan confidence score
|
34 |
+
draw.text((x1, y1 - 10), f'{conf:.2f}', fill="red")
|
35 |
+
|
36 |
+
return img_pil
|
37 |
+
|
38 |
+
# Judul aplikasi
|
39 |
+
st.title('Deteksi Jerawat Menggunakan YOLOv8')
|
40 |
+
|
41 |
+
# Pilihan untuk mengunggah gambar
|
42 |
+
uploaded_file = st.file_uploader("Unggah Gambar", type=["jpg", "jpeg", "png"])
|
43 |
+
|
44 |
+
# Tampilkan gambar asli terlebih dahulu
|
45 |
+
if uploaded_file is not None:
|
46 |
+
# Membaca gambar
|
47 |
+
image = Image.open(uploaded_file)
|
48 |
+
|
49 |
+
# Tampilkan gambar asli
|
50 |
+
st.image(image, caption='Gambar yang Diupload', use_column_width=True)
|
51 |
+
|
52 |
+
# Tombol untuk melakukan deteksi jerawat
|
53 |
+
if st.button('Deteksi Jerawat'):
|
54 |
+
# Deteksi jerawat dalam gambar
|
55 |
+
detected_image = detect_acne(image)
|
56 |
+
|
57 |
+
# Tampilkan gambar hasil deteksi
|
58 |
+
st.image(detected_image, caption='Hasil Deteksi Jerawat', use_column_width=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.39.0
|
2 |
+
opencv-python-headless==4.10.0.84
|
3 |
+
numpy==2.1.2
|
4 |
+
Pillow==10.4.0
|
5 |
+
ultralytics==8.3.8
|