# Exportando modelos para ONNX
Se você precisar implantar modelos 🤗 Transformers em ambientes de produção, recomendamos
exporta-los para um formato serializado que pode ser carregado e executado em
tempos de execução e hardware. Neste guia, mostraremos como exportar modelos 🤗 Transformers
para [ONNX (Open Neural Network eXchange)](http://onnx.ai).
Uma vez exportado, um modelo pode ser otimizado para inferência por meio de técnicas como
quantização e poda. Se você estiver interessado em otimizar seus modelos para serem executados com
máxima eficiência, confira a biblioteca [🤗 Optimum
](https://github.com/huggingface/optimum).
ONNX é um padrão aberto que define um conjunto comum de operadores e um formato de arquivo comum
para representar modelos de aprendizado profundo em uma ampla variedade de estruturas, incluindo PyTorch e
TensorFlow. Quando um modelo é exportado para o formato ONNX, esses operadores são usados para
construir um grafo computacional (muitas vezes chamado de _representação intermediária_) que
representa o fluxo de dados através da rede neural.
Ao expor um grafo com operadores e tipos de dados padronizados, o ONNX facilita a
alternar entre os frameworks. Por exemplo, um modelo treinado em PyTorch pode ser exportado para
formato ONNX e depois importado no TensorFlow (e vice-versa).
🤗 Transformers fornece um pacote [`transformers.onnx`](main_classes/onnx) que permite
que você converta os checkpoints do modelo em um grafo ONNX aproveitando os objetos de configuração.
Esses objetos de configuração vêm prontos para várias arquiteturas de modelo e são
projetado para ser facilmente extensível a outras arquiteturas.
As configurações prontas incluem as seguintes arquiteturas:
- ALBERT
- BART
- BEiT
- BERT
- BigBird
- BigBird-Pegasus
- Blenderbot
- BlenderbotSmall
- BLOOM
- CamemBERT
- CLIP
- CodeGen
- Conditional DETR
- ConvBERT
- ConvNeXT
- ConvNeXTV2
- Data2VecText
- Data2VecVision
- DeBERTa
- DeBERTa-v2
- DeiT
- DETR
- DistilBERT
- ELECTRA
- ERNIE
- FlauBERT
- GPT Neo
- GPT-J
- GroupViT
- I-BERT
- LayoutLM
- LayoutLMv3
- LeViT
- Longformer
- LongT5
- M2M100
- Marian
- mBART
- MobileBERT
- MobileViT
- MT5
- OpenAI GPT-2
- OWL-ViT
- Perceiver
- PLBart
- ResNet
- RoBERTa
- RoFormer
- SegFormer
- SqueezeBERT
- Swin Transformer
- T5
- Table Transformer
- Vision Encoder decoder
- ViT
- XLM
- XLM-RoBERTa
- XLM-RoBERTa-XL
- YOLOS
Nas próximas duas seções, mostraremos como:
* Exportar um modelo suportado usando o pacote `transformers.onnx`.
* Exportar um modelo personalizado para uma arquitetura sem suporte.
## Exportando um modelo para ONNX
Para exportar um modelo 🤗 Transformers para o ONNX, primeiro você precisa instalar algumas
dependências extras:
```bash
pip install transformers[onnx]
```
O pacote `transformers.onnx` pode então ser usado como um módulo Python:
```bash
python -m transformers.onnx --help
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
positional arguments:
output Path indicating where to store generated ONNX model.
optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Model ID on huggingface.co or path on disk to load model from.
--feature {causal-lm, ...}
The type of features to export the model with.
--opset OPSET ONNX opset version to export the model with.
--atol ATOL Absolute difference tolerance when validating the model.
```
A exportação de um checkpoint usando uma configuração pronta pode ser feita da seguinte forma:
```bash
python -m transformers.onnx --model=distilbert-base-uncased onnx/
```
Você deve ver os seguintes logs:
```bash
Validating ONNX model...
-[✓] ONNX model output names match reference model ({'last_hidden_state'})
- Validating ONNX Model output "last_hidden_state":
-[✓] (2, 8, 768) matches (2, 8, 768)
-[✓] all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
```
Isso exporta um grafo ONNX do ponto de verificação definido pelo argumento `--model`. Nisso
Por exemplo, é `distilbert-base-uncased`, mas pode ser qualquer checkpoint no Hugging
Face Hub ou um armazenado localmente.
O arquivo `model.onnx` resultante pode ser executado em um dos [muitos
aceleradores](https://onnx.ai/supported-tools.html#deployModel) que suportam o ONNX
padrão. Por exemplo, podemos carregar e executar o modelo com [ONNX
Tempo de execução](https://onnxruntime.ai/) da seguinte forma:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Os nomes de saída necessários (como `["last_hidden_state"]`) podem ser obtidos pegando uma
configuração ONNX de cada modelo. Por exemplo, para DistilBERT temos:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
O processo é idêntico para os checkpoints do TensorFlow no Hub. Por exemplo, podemos
exportar um checkpoint TensorFlow puro do [Keras
](https://huggingface.co/keras-io) da seguinte forma:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
Para exportar um modelo armazenado localmente, você precisará ter os pesos e
arquivos tokenizer armazenados em um diretório. Por exemplo, podemos carregar e salvar um checkpoint como:
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> # Load tokenizer and PyTorch weights form the Hub
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
```
Uma vez que o checkpoint é salvo, podemos exportá-lo para o ONNX apontando o `--model`
argumento do pacote `transformers.onnx` para o diretório desejado:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
```python
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> # Load tokenizer and TensorFlow weights from the Hub
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```
Uma vez que o checkpoint é salvo, podemos exportá-lo para o ONNX apontando o `--model`
argumento do pacote `transformers.onnx` para o diretório desejado:
```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
## Selecionando features para diferentes tarefas do modelo
Cada configuração pronta vem com um conjunto de _features_ que permitem exportar
modelos para diferentes tipos de tarefas. Conforme mostrado na tabela abaixo, cada recurso é
associado a uma `AutoClass` diferente:
| Feature | Auto Class |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past` | `AutoModelForCausalLM` |
| `default`, `default-with-past` | `AutoModel` |
| `masked-lm` | `AutoModelForMaskedLM` |
| `question-answering` | `AutoModelForQuestionAnswering` |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM` |
| `sequence-classification` | `AutoModelForSequenceClassification` |
| `token-classification` | `AutoModelForTokenClassification` |
Para cada configuração, você pode encontrar a lista de recursos suportados por meio do
[`~transformers.onnx.FeaturesManager`]. Por exemplo, para DistilBERT temos:
```python
>>> from transformers.onnx.features import FeaturesManager
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
```
Você pode então passar um desses recursos para o argumento `--feature` no
pacote `transformers.onnx`. Por exemplo, para exportar um modelo de classificação de texto, podemos
escolher um modelo ajustado no Hub e executar:
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
--feature=sequence-classification onnx/
```
Isso exibe os seguintes logs:
```bash
Validating ONNX model...
-[✓] ONNX model output names match reference model ({'logits'})
- Validating ONNX Model output "logits":
-[✓] (2, 2) matches (2, 2)
-[✓] all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
```
Observe que, neste caso, os nomes de saída do modelo ajustado são `logits`
em vez do `last_hidden_state` que vimos com o checkpoint `distilbert-base-uncased`
mais cedo. Isso é esperado, pois o modelo ajustado (fine-tuned) possui uma cabeça de classificação de sequência.
Os recursos que têm um sufixo `with-pass` (como `causal-lm-with-pass`) correspondem a
classes de modelo com estados ocultos pré-computados (chave e valores nos blocos de atenção)
que pode ser usado para decodificação autorregressiva rápida.
Para modelos do tipo `VisionEncoderDecoder`, as partes do codificador e do decodificador são
exportados separadamente como dois arquivos ONNX chamados `encoder_model.onnx` e `decoder_model.onnx` respectivamente.
## Exportando um modelo para uma arquitetura sem suporte
Se você deseja exportar um modelo cuja arquitetura não é suportada nativamente pela
biblioteca, há três etapas principais a seguir:
1. Implemente uma configuração ONNX personalizada.
2. Exporte o modelo para o ONNX.
3. Valide as saídas do PyTorch e dos modelos exportados.
Nesta seção, veremos como o DistilBERT foi implementado para mostrar o que está envolvido
em cada passo.
### Implementando uma configuração ONNX personalizada
Vamos começar com o objeto de configuração ONNX. Fornecemos três classes abstratas que
você deve herdar, dependendo do tipo de arquitetura de modelo que deseja exportar:
* Modelos baseados em codificador herdam de [`~onnx.config.OnnxConfig`]
* Modelos baseados em decodificador herdam de [`~onnx.config.OnnxConfigWithPast`]
* Os modelos codificador-decodificador herdam de [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Uma boa maneira de implementar uma configuração ONNX personalizada é observar as
implementação no arquivo `configuration_.py` de uma arquitetura semelhante.
Como o DistilBERT é um modelo baseado em codificador, sua configuração é herdada de
`OnnxConfig`:
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig
>>> class DistilBertOnnxConfig(OnnxConfig):
... @property
... def inputs(self) -> Mapping[str, Mapping[int, str]]:
... return OrderedDict(
... [
... ("input_ids", {0: "batch", 1: "sequence"}),
... ("attention_mask", {0: "batch", 1: "sequence"}),
... ]
... )
```
Todo objeto de configuração deve implementar a propriedade `inputs` e retornar um mapeamento,
onde cada chave corresponde a uma entrada esperada e cada valor indica o eixo
dessa entrada. Para o DistilBERT, podemos ver que duas entradas são necessárias: `input_ids` e
`attention_mask`. Essas entradas têm a mesma forma de `(batch_size, sequence_length)`
é por isso que vemos os mesmos eixos usados na configuração.
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Observe que a propriedade `inputs` para `DistilBertOnnxConfig` retorna um `OrderedDict`. Este
garante que as entradas sejam combinadas com sua posição relativa dentro do
método `PreTrainedModel.forward()` ao traçar o grafo. Recomendamos o uso de um
`OrderedDict` para as propriedades `inputs` e `outputs` ao implementar configurações personalizadas ONNX.
Depois de implementar uma configuração ONNX, você pode instanciá-la fornecendo a
configuração do modelo base da seguinte forma:
```python
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
O objeto resultante tem várias propriedades úteis. Por exemplo, você pode visualizar o conjunto de operadores ONNX
que será usado durante a exportação:
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Você também pode visualizar as saídas associadas ao modelo da seguinte forma:
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Observe que a propriedade outputs segue a mesma estrutura das entradas; ele retorna um
`OrderedDict` de saídas nomeadas e suas formas. A estrutura de saída está ligada a
escolha do recurso com o qual a configuração é inicializada. Por padrão, a configuração do ONNX
é inicializada com o recurso `default` que corresponde à exportação de um
modelo carregado com a classe `AutoModel`. Se você deseja exportar um modelo para outra tarefa,
apenas forneça um recurso diferente para o argumento `task` quando você inicializar a configuração ONNX
. Por exemplo, se quisermos exportar o DistilBERT com uma sequência
de classificação, poderíamos usar:
```python
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Todas as propriedades e métodos básicos associados a [`~onnx.config.OnnxConfig`] e
as outras classes de configuração podem ser substituídas se necessário. Confira [`BartOnnxConfig`]
para um exemplo avançado.
### Exportando um modelo
Depois de ter implementado a configuração do ONNX, o próximo passo é exportar o modelo.
Aqui podemos usar a função `export()` fornecida pelo pacote `transformers.onnx`.
Esta função espera a configuração do ONNX, juntamente com o modelo base e o tokenizer,
e o caminho para salvar o arquivo exportado:
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Os `onnx_inputs` e `onnx_outputs` retornados pela função `export()` são listas de
chaves definidas nas propriedades `inputs` e `outputs` da configuração. Uma vez que o
modelo é exportado, você pode testar se o modelo está bem formado da seguinte forma:
```python
>>> import onnx
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Se o seu modelo for maior que 2GB, você verá que muitos arquivos adicionais são criados
durante a exportação. Isso é _esperado_ porque o ONNX usa [Protocol
Buffers](https://developers.google.com/protocol-buffers/) para armazenar o modelo e estes
têm um limite de tamanho de 2GB. Veja a [ONNX
documentação](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) para
instruções sobre como carregar modelos com dados externos.
### Validando a saída dos modelos
A etapa final é validar se as saídas do modelo base e exportado concordam
dentro de alguma tolerância absoluta. Aqui podemos usar a função `validate_model_outputs()`
fornecida pelo pacote `transformers.onnx` da seguinte forma:
```python
>>> from transformers.onnx import validate_model_outputs
>>> validate_model_outputs(
... onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
```
Esta função usa o método [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] para
gerar entradas para o modelo base e o exportado, e a tolerância absoluta pode ser
definida na configuração. Geralmente encontramos concordância numérica em 1e-6 a 1e-4
de alcance, embora qualquer coisa menor que 1e-3 provavelmente esteja OK.
## Contribuindo com uma nova configuração para 🤗 Transformers
Estamos procurando expandir o conjunto de configurações prontas e receber contribuições
da comunidade! Se você gostaria de contribuir para a biblioteca, você
precisará:
* Implemente a configuração do ONNX no arquivo `configuration_.py` correspondente
Arquivo
* Incluir a arquitetura do modelo e recursos correspondentes em
[`~onnx.features.FeatureManager`]
* Adicione sua arquitetura de modelo aos testes em `test_onnx_v2.py`
Confira como ficou a configuração do [IBERT
](https://github.com/huggingface/transformers/pull/14868/files) para obter uma
idéia do que está envolvido.