File size: 16,050 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->

# Compartilhando modelos customizados

A biblioteca 🤗 Transformers foi projetada para ser facilmente extensível. Cada modelo é totalmente codificado em uma determinada subpasta 
do repositório sem abstração, para que você possa copiar facilmente um arquivo de modelagem e ajustá-lo às suas necessidades.

Se você estiver escrevendo um modelo totalmente novo, pode ser mais fácil começar do zero. Neste tutorial, mostraremos 
como escrever um modelo customizado e sua configuração para que possa ser usado com Transformers, e como você pode compartilhá-lo 
com a comunidade (com o código em que se baseia) para que qualquer pessoa possa usá-lo, mesmo se não estiver presente na biblioteca 🤗 Transformers.

Ilustraremos tudo isso em um modelo ResNet, envolvendo a classe ResNet do
[biblioteca timm](https://github.com/rwightman/pytorch-image-models) em um [`PreTrainedModel`].

## Escrevendo uma configuração customizada

Antes de mergulharmos no modelo, vamos primeiro escrever sua configuração. A configuração de um modelo é um objeto que
terá todas as informações necessárias para construir o modelo. Como veremos na próxima seção, o modelo só pode
ter um `config` para ser inicializado, então realmente precisamos que esse objeto seja o mais completo possível.

Em nosso exemplo, pegaremos alguns argumentos da classe ResNet que podemos querer ajustar. Diferentes
configurações nos dará os diferentes tipos de ResNets que são possíveis. Em seguida, apenas armazenamos esses argumentos,
após verificar a validade de alguns deles.

```python
from transformers import PretrainedConfig
from typing import List


class ResnetConfig(PretrainedConfig):
    model_type = "resnet"

    def __init__(
        self,
        block_type="bottleneck",
        layers: List[int] = [3, 4, 6, 3],
        num_classes: int = 1000,
        input_channels: int = 3,
        cardinality: int = 1,
        base_width: int = 64,
        stem_width: int = 64,
        stem_type: str = "",
        avg_down: bool = False,
        **kwargs,
    ):
        if block_type not in ["basic", "bottleneck"]:
            raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
        if stem_type not in ["", "deep", "deep-tiered"]:
            raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")

        self.block_type = block_type
        self.layers = layers
        self.num_classes = num_classes
        self.input_channels = input_channels
        self.cardinality = cardinality
        self.base_width = base_width
        self.stem_width = stem_width
        self.stem_type = stem_type
        self.avg_down = avg_down
        super().__init__(**kwargs)
```

As três coisas importantes a serem lembradas ao escrever sua própria configuração são:
- você tem que herdar de `PretrainedConfig`,
- o `__init__` do seu `PretrainedConfig` deve aceitar quaisquer kwargs,
- esses `kwargs` precisam ser passados para a superclasse `__init__`.

A herança é para garantir que você obtenha todas as funcionalidades da biblioteca 🤗 Transformers, enquanto as outras duas
restrições vêm do fato de um `PretrainedConfig` ter mais campos do que os que você está configurando. Ao recarregar um
config com o método `from_pretrained`, esses campos precisam ser aceitos pelo seu config e então enviados para a
superclasse.

Definir um `model_type` para sua configuração (aqui `model_type="resnet"`) não é obrigatório, a menos que você queira
registrar seu modelo com as classes automáticas (veja a última seção).

Com isso feito, você pode facilmente criar e salvar sua configuração como faria com qualquer outra configuração de modelo da
biblioteca. Aqui está como podemos criar uma configuração resnet50d e salvá-la:

```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d_config.save_pretrained("custom-resnet")
```

Isso salvará um arquivo chamado `config.json` dentro da pasta `custom-resnet`. Você pode então recarregar sua configuração com o
método `from_pretrained`:

```py
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
```

Você também pode usar qualquer outro método da classe [`PretrainedConfig`], como [`~PretrainedConfig.push_to_hub`] para
carregar diretamente sua configuração para o Hub.

## Escrevendo um modelo customizado

Agora que temos nossa configuração ResNet, podemos continuar escrevendo o modelo. Na verdade, escreveremos dois: um que
extrai os recursos ocultos de um lote de imagens (como [`BertModel`]) e um que é adequado para classificação de imagem
(como [`BertForSequenceClassification`]).

Como mencionamos antes, escreveremos apenas um wrapper solto do modelo para mantê-lo simples para este exemplo. A única
coisa que precisamos fazer antes de escrever esta classe é um mapa entre os tipos de bloco e as classes de bloco reais. Então o
modelo é definido a partir da configuração passando tudo para a classe `ResNet`:

```py
from transformers import PreTrainedModel
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
from .configuration_resnet import ResnetConfig


BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}


class ResnetModel(PreTrainedModel):
    config_class = ResnetConfig

    def __init__(self, config):
        super().__init__(config)
        block_layer = BLOCK_MAPPING[config.block_type]
        self.model = ResNet(
            block_layer,
            config.layers,
            num_classes=config.num_classes,
            in_chans=config.input_channels,
            cardinality=config.cardinality,
            base_width=config.base_width,
            stem_width=config.stem_width,
            stem_type=config.stem_type,
            avg_down=config.avg_down,
        )

    def forward(self, tensor):
        return self.model.forward_features(tensor)
```

Para o modelo que irá classificar as imagens, vamos apenas alterar o método forward:

```py
import torch


class ResnetModelForImageClassification(PreTrainedModel):
    config_class = ResnetConfig

    def __init__(self, config):
        super().__init__(config)
        block_layer = BLOCK_MAPPING[config.block_type]
        self.model = ResNet(
            block_layer,
            config.layers,
            num_classes=config.num_classes,
            in_chans=config.input_channels,
            cardinality=config.cardinality,
            base_width=config.base_width,
            stem_width=config.stem_width,
            stem_type=config.stem_type,
            avg_down=config.avg_down,
        )

    def forward(self, tensor, labels=None):
        logits = self.model(tensor)
        if labels is not None:
            loss = torch.nn.cross_entropy(logits, labels)
            return {"loss": loss, "logits": logits}
        return {"logits": logits}
```

Em ambos os casos, observe como herdamos de `PreTrainedModel` e chamamos a inicialização da superclasse com o `config`
(um pouco parecido quando você escreve um `torch.nn.Module`). A linha que define o `config_class` não é obrigatória, a menos que
você deseje registrar seu modelo com as classes automáticas (consulte a última seção).

<Tip>

Se o seu modelo for muito semelhante a um modelo dentro da biblioteca, você poderá reutilizar a mesma configuração desse modelo.

</Tip>

Você pode fazer com que seu modelo retorne o que você quiser,porém retornando um dicionário como fizemos para
`ResnetModelForImageClassification`, com a função de perda incluída quando os rótulos são passados, vai tornar seu modelo diretamente
utilizável dentro da classe [`Trainer`]. Você pode usar outro formato de saída, desde que esteja planejando usar seu próprio
laço de treinamento ou outra biblioteca para treinamento.

Agora que temos nossa classe do modelo, vamos criar uma:

```py
resnet50d = ResnetModelForImageClassification(resnet50d_config)
```

Novamente, você pode usar qualquer um dos métodos do [`PreTrainedModel`], como [`~PreTrainedModel.save_pretrained`] ou
[`~PreTrainedModel.push_to_hub`]. Usaremos o segundo na próxima seção e veremos como enviar os pesos e
o código do nosso modelo. Mas primeiro, vamos carregar alguns pesos pré-treinados dentro do nosso modelo.

Em seu próprio caso de uso, você provavelmente estará treinando seu modelo customizado em seus próprios dados. Para este tutorial ser rápido,
usaremos a versão pré-treinada do resnet50d. Como nosso modelo é apenas um wrapper em torno dele, será
fácil de transferir esses pesos:

```py
import timm

pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```

Agora vamos ver como ter certeza de que quando fazemos [`~PreTrainedModel.save_pretrained`] ou [`~PreTrainedModel.push_to_hub`], o
código do modelo é salvo.

## Enviando o código para o Hub

<Tip warning={true}>

Esta API é experimental e pode ter algumas pequenas alterações nas próximas versões.

</Tip>

Primeiro, certifique-se de que seu modelo esteja totalmente definido em um arquivo `.py`. Ele pode contar com importações relativas para alguns outros arquivos 
desde que todos os arquivos estejam no mesmo diretório (ainda não suportamos submódulos para este recurso). Para o nosso exemplo,
vamos definir um arquivo `modeling_resnet.py` e um arquivo `configuration_resnet.py` em uma pasta no 
diretório de trabalho atual chamado `resnet_model`. O arquivo de configuração contém o código para `ResnetConfig` e o arquivo de modelagem
contém o código do `ResnetModel` e `ResnetModelForImageClassification`.

```
.
└── resnet_model
    ├── __init__.py
    ├── configuration_resnet.py
    └── modeling_resnet.py
```

O `__init__.py` pode estar vazio, apenas está lá para que o Python detecte que o `resnet_model` possa ser usado como um módulo.

<Tip warning={true}>

Se estiver copiando arquivos de modelagem da biblioteca, você precisará substituir todas as importações relativas na parte superior do arquivo
para importar do pacote `transformers`.

</Tip>

Observe que você pode reutilizar (ou subclasse) uma configuração/modelo existente.

Para compartilhar seu modelo com a comunidade, siga estas etapas: primeiro importe o modelo ResNet e a configuração do
arquivos criados:

```py
from resnet_model.configuration_resnet import ResnetConfig
from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification
```

Então você tem que dizer à biblioteca que deseja copiar os arquivos de código desses objetos ao usar o `save_pretrained`
e registrá-los corretamente com uma determinada classe automáticas (especialmente para modelos), basta executar:

```py
ResnetConfig.register_for_auto_class()
ResnetModel.register_for_auto_class("AutoModel")
ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification")
```

Observe que não há necessidade de especificar uma classe automática para a configuração (há apenas uma classe automática,
[`AutoConfig`]), mas é diferente para os modelos. Seu modelo customizado pode ser adequado para muitas tarefas diferentes, então você
tem que especificar qual das classes automáticas é a correta para o seu modelo.

Em seguida, vamos criar a configuração e os modelos como fizemos antes:

```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d = ResnetModelForImageClassification(resnet50d_config)

pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```

Agora para enviar o modelo para o Hub, certifique-se de estar logado. Ou execute no seu terminal:

```bash
huggingface-cli login
```

ou a partir do notebook:

```py
from huggingface_hub import notebook_login

notebook_login()
```

Você pode então enviar para seu próprio namespace (ou uma organização da qual você é membro) assim:


```py
resnet50d.push_to_hub("custom-resnet50d")
```

Além dos pesos do modelo e da configuração no formato json, isso também copiou o modelo e
configuração `.py` na pasta `custom-resnet50d` e carregou o resultado para o Hub. Você pode conferir o resultado
neste [repositório de modelos](https://huggingface.co/sgugger/custom-resnet50d).

Consulte o [tutorial de compartilhamento](model_sharing) para obter mais informações sobre o método push_to_hub.

## Usando um modelo com código customizado

Você pode usar qualquer configuração, modelo ou tokenizador com arquivos de código customizados em seu repositório com as classes automáticas e
o método `from_pretrained`. Todos os arquivos e códigos carregados no Hub são verificados quanto a malware (consulte a documentação de [Segurança do Hub](https://huggingface.co/docs/hub/security#malware-scanning) para obter mais informações), mas você ainda deve
revisar o código do modelo e o autor para evitar a execução de código malicioso em sua máquina. Defina `trust_remote_code=True` para usar
um modelo com código customizado:

```py
from transformers import AutoModelForImageClassification

model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True)
```

Também é fortemente recomendado passar um hash de confirmação como uma `revisão` para garantir que o autor dos modelos não
atualize o código com novas linhas maliciosas (a menos que você confie totalmente nos autores dos modelos).


```py
commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292"
model = AutoModelForImageClassification.from_pretrained(
    "sgugger/custom-resnet50d", trust_remote_code=True, revision=commit_hash
)
```

Observe que ao navegar no histórico de commits do repositório do modelo no Hub, há um botão para copiar facilmente o commit
hash de qualquer commit.

## Registrando um modelo com código customizado para as classes automáticas

Se você estiver escrevendo uma biblioteca que estende 🤗 Transformers, talvez queira estender as classes automáticas para incluir seus próprios
modelos. Isso é diferente de enviar o código para o Hub no sentido de que os usuários precisarão importar sua biblioteca para
obter os modelos customizados (ao contrário de baixar automaticamente o código do modelo do Hub).

Desde que sua configuração tenha um atributo `model_type` diferente dos tipos de modelo existentes e que as classes do seu modelo
tenha os atributos `config_class` corretos, você pode simplesmente adicioná-los às classes automáticas assim:

```py
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification

AutoConfig.register("resnet", ResnetConfig)
AutoModel.register(ResnetConfig, ResnetModel)
AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification)
```

Observe que o primeiro argumento usado ao registrar sua configuração customizada para [`AutoConfig`] precisa corresponder ao `model_type`
de sua configuração customizada. E o primeiro argumento usado ao registrar seus modelos customizados, para qualquer necessidade de classe de modelo automático
deve corresponder ao `config_class` desses modelos.