File size: 9,025 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->


# ํ›ˆ๋ จ์šฉ ์‚ฌ์šฉ์ž ๋งž์ถคํ˜• ํ•˜๋“œ์›จ์–ด [[custom-hardware-for-training]]

๋ชจ๋ธ ํ›ˆ๋ จ๊ณผ ์ถ”๋ก ์— ์‚ฌ์šฉํ•˜๋Š” ํ•˜๋“œ์›จ์–ด๋Š” ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. GPU์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด๋ ค๋ฉด, Tim Dettmer์˜ ํ›Œ๋ฅญํ•œ ๋ธ”๋กœ๊ทธ ํฌ์ŠคํŠธ๋ฅผ ํ™•์ธํ•ด๋ณด์„ธ์š”. [๋ธ”๋กœ๊ทธ ํฌ์ŠคํŠธ ๋งํฌ](https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/) (์˜์–ด๋กœ ์ž‘์„ฑ๋จ).

GPU ์„ค์ •์— ๋Œ€ํ•œ ์‹ค์šฉ์ ์ธ ์กฐ์–ธ์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

## GPU [[gpu]]
๋” ํฐ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ฌ ๋•Œ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ ์„ธ ๊ฐ€์ง€ ์˜ต์…˜์ด ์žˆ์Šต๋‹ˆ๋‹ค:

- ๋” ํฐ GPU
- ๋” ๋งŽ์€ GPU
- ๋” ๋งŽ์€ CPU ๋ฐ NVMe ([DeepSpeed-Infinity](../en/main_classes/deepspeed#nvme-support)๋ฅผ ํ†ตํ•œ ์˜คํ”„๋กœ๋“œ(offload))

์šฐ์„ , ํ•˜๋‚˜์˜ GPU๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด๋ด…์‹œ๋‹ค.

### ์ „์› ๊ณต๊ธ‰๊ณผ ๋ƒ‰๊ฐ [[power-and-cooling]]

๋น„์‹ผ ๊ณ ์„ฑ๋Šฅ GPU๋ฅผ ๊ตฌ๋งคํ•œ ๊ฒฝ์šฐ, ์˜ฌ๋ฐ”๋ฅธ ์ „์› ๊ณต๊ธ‰๊ณผ ์ถฉ๋ถ„ํ•œ ๋ƒ‰๊ฐ์„ ์ œ๊ณตํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

**์ „์› ๊ณต๊ธ‰**:

์ผ๋ถ€ ๊ณ ์„ฑ๋Šฅ ์†Œ๋น„์ž์šฉ GPU๋Š” 2๊ฐœ ํ˜น์€ ๊ฐ€๋”๊ฐ€๋‹ค 3๊ฐœ์˜ PCI-E 8ํ•€ ์ „์› ์†Œ์ผ“์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์นด๋“œ์— ์žˆ๋Š” ์†Œ์ผ“ ์ˆ˜๋งŒํผ ๋…๋ฆฝ์ ์ธ 12V PCI-E 8ํ•€ ์ผ€์ด๋ธ”์ด ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”. ๊ฐ™์€ ์ผ€์ด๋ธ”์˜ ํ•œ์ชฝ ๋์— ์žˆ๋Š” 2๊ฐœ์˜ ์Šคํ”Œ๋ฆฟ(๋˜๋Š” ํ”ผ๊ทธํ…Œ์ผ(pigtail) ์ผ€์ด๋ธ”)์„ ์‚ฌ์šฉํ•˜์ง€ ๋งˆ์„ธ์š”. ์ฆ‰, GPU์— 2๊ฐœ์˜ ์†Œ์ผ“์ด ์žˆ๋‹ค๋ฉด, PSU(์ „์› ๊ณต๊ธ‰ ์žฅ์น˜)์—์„œ ์นด๋“œ๋กœ ์—ฐ๊ฒฐ๋˜๋Š” 2๊ฐœ์˜ PCI-E 8ํ•€ ์ผ€์ด๋ธ”์ด ํ•„์š”ํ•˜๋ฉฐ, ๋์— 2๊ฐœ์˜ PCI-E 8ํ•€ ์ปค๋„ฅํ„ฐ๊ฐ€ ์žˆ๋Š” ์ผ€์ด๋ธ”์ด ํ•„์š”ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค! ๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด ์นด๋“œ์˜ ์ „์ฒด ์„ฑ๋Šฅ์„ ์ œ๋Œ€๋กœ ๋ฐœํœ˜ํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ฐ๊ฐ์˜ PCI-E 8ํ•€ ์ „์› ์ผ€์ด๋ธ”์€ PSU ์ชฝ์˜ 12V ๋ ˆ์ผ์— ์—ฐ๊ฒฐ๋˜์–ด์•ผ ํ•˜๋ฉฐ ์ตœ๋Œ€ 150W์˜ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ผ๋ถ€ ๋‹ค๋ฅธ GPU๋Š” PCI-E 12ํ•€ ์ปค๋„ฅํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ์ปค๋„ฅํ„ฐ๋Š” ์ตœ๋Œ€ 500W-600W์˜ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ €๊ฐ€ํ˜• GPU๋Š” 6ํ•€ ์ปค๋„ฅํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ์ตœ๋Œ€ 75W์˜ ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•ฉ๋‹ˆ๋‹ค.

๋˜ํ•œ GPU๊ฐ€ ์•ˆ์ •์ ์ธ ์ „์••์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋„๋ก ๊ณ ๊ธ‰ PSU๋ฅผ ์„ ํƒํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ถ€ ์ €ํ’ˆ์งˆ์˜ PSU๋Š” GPU๊ฐ€ ์ตœ๊ณ  ์„ฑ๋Šฅ์œผ๋กœ ๋™์ž‘ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์ „์••์„ ์•ˆ์ •์ ์œผ๋กœ ๊ณต๊ธ‰ํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋ฌผ๋ก , PSU๋Š” GPU์— ์ „์›์„ ๊ณต๊ธ‰ํ•˜๊ธฐ์— ์ถฉ๋ถ„ํ•œ ์—ฌ๋ถ„์˜ ์ „๋ ฅ ์šฉ๋Ÿ‰์„ ๊ฐ€์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค.

**๋ƒ‰๊ฐ**:

GPU๊ฐ€ ๊ณผ์—ด๋˜๋ฉด ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๊ณ  ์ตœ๋Œ€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋„ˆ๋ฌด ๋œจ๊ฑฐ์›Œ์ง€๋ฉด ์ค‘์ง€๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

GPU๊ฐ€ ๊ณผ์—ด๋  ๋•Œ ์ •ํ™•ํ•œ ์ ์ • ์˜จ๋„๋ฅผ ์•Œ๊ธฐ ์–ด๋ ค์šฐ๋‚˜, ์•„๋งˆ๋„ +80โ„ƒ ๋ฏธ๋งŒ์ด๋ฉด ์ข‹์ง€๋งŒ ๋” ๋‚ฎ์„์ˆ˜๋ก ์ข‹์Šต๋‹ˆ๋‹ค. 70โ„ƒ-75โ„ƒ ์ •๋„๊ฐ€ ํ›Œ๋ฅญํ•œ ์˜จ๋„ ๋ฒ”์œ„์ž…๋‹ˆ๋‹ค. ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ์‹œ์ž‘ํ•˜๋Š” ์˜จ๋„๋Š” ๋Œ€๋žต 84โ„ƒ-90โ„ƒ ์ •๋„์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์„ฑ๋Šฅ ์ €ํ•˜ ์ด์™ธ์—๋„ ์ง€์†์ ์œผ๋กœ ๋งค์šฐ ๋†’์€ ์˜จ๋„๋Š” GPU ์ˆ˜๋ช…์„ ๋‹จ์ถ•์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด์–ด์„œ, ์—ฌ๋Ÿฌ ๊ฐœ์˜ GPU๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ธก๋ฉด ์ค‘ ํ•˜๋‚˜์ธ GPU ๊ฐ„ ์—ฐ๊ฒฐ ๋ฐฉ์‹์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

### ๋‹ค์ค‘ GPU ์—ฐ๊ฒฐ ๋ฐฉ์‹ [[multigpu-connectivity]]

๋‹ค์ค‘ GPU๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ GPU ๊ฐ„์˜ ์—ฐ๊ฒฐ ๋ฐฉ์‹์€ ์ „์ฒด ํ›ˆ๋ จ ์‹œ๊ฐ„์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋งŒ์•ฝ GPU๊ฐ€ ๋™์ผํ•œ ๋ฌผ๋ฆฌ์  ๋…ธ๋“œ์— ์žˆ์„ ๊ฒฝ์šฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```
nvidia-smi topo -m
```

๋งŒ์•ฝ NVLink๋กœ ์—ฐ๊ฒฐ๋œ ๋“€์–ผ GPU ํ™˜๊ฒฝ์ด๋ผ๋ฉด, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```
        GPU0    GPU1    CPU Affinity    NUMA Affinity
GPU0     X      NV2     0-23            N/A
GPU1    NV2      X      0-23            N/A
```

NVLink๋ฅผ ์ง€์›ํ•˜์ง€ ์•Š๋Š” ๋‹ค๋ฅธ ํ™˜๊ฒฝ์˜ ๊ฒฝ์šฐ์—๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```
        GPU0    GPU1    CPU Affinity    NUMA Affinity
GPU0     X      PHB     0-11            N/A
GPU1    PHB      X      0-11            N/A
```

์ด ๊ฒฐ๊ณผ์—๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฒ”๋ก€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค:

```
  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks
```

๋”ฐ๋ผ์„œ ์ฒซ ๋ฒˆ์งธ ๊ฒฐ๊ณผ์˜ `NV2`๋Š” GPU๊ฐ€ 2๊ฐœ์˜ NVLink๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ด๊ณ , ๋‘ ๋ฒˆ์งธ ๊ฒฐ๊ณผ์˜ `PHB`๋Š” ์ผ๋ฐ˜์ ์ธ ์†Œ๋น„์ž์šฉ PCIe+๋ธŒ๋ฆฟ์ง€ ์„ค์ •์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

์„ค์ •์—์„œ ์–ด๋–ค ์œ ํ˜•์˜ ์—ฐ๊ฒฐ ๋ฐฉ์‹์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”. ์ผ๋ถ€ ์—ฐ๊ฒฐ ๋ฐฉ์‹์€ GPU ๊ฐ„ ํ†ต์‹ ์„ ๋” ๋น ๋ฅด๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์œผ๋ฉฐ(NVLink์™€ ๊ฐ™์ด), ์–ด๋–ค ์—ฐ๊ฒฐ ๋ฐฉ์‹์€ ๋” ๋Š๋ฆฌ๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค(PHB์™€ ๊ฐ™์ด).

์‚ฌ์šฉํ•˜๋Š” ํ™•์žฅ์„ฑ ์†”๋ฃจ์…˜์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์—ฐ๊ฒฐ ์†๋„๊ฐ€ ์ฃผ์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜๋„ ์žˆ๊ณ  ๋ฏธ๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. DDP์™€ ๊ฐ™์ด GPU๊ฐ€ ๊ฑฐ์˜ ๋™๊ธฐํ™”ํ•˜์ง€ ์•Š์•„๋„ ๋˜๋Š” ๊ฒฝ์šฐ, ์—ฐ๊ฒฐ ์†๋„๊ฐ€ ๋Š๋ ค๋„ ํฐ ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด ZeRO-DP์™€ ๊ฐ™์ด GPU๊ฐ„ ํ†ต์‹ ์ด ๋งŽ์ด ํ•„์š”ํ•œ ๊ฒฝ์šฐ, ๋” ๋น ๋ฅธ ํ›ˆ๋ จ์„ ์œ„ํ•ด์„œ๋Š” ๋” ๋น ๋ฅธ ์—ฐ๊ฒฐ ์†๋„๊ฐ€ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

#### NVLink [[nvlink]]

[NVLink](https://en.wikipedia.org/wiki/NVLink)๋Š” Nvidia์—์„œ ๊ฐœ๋ฐœํ•œ ์œ ์„  ๊ธฐ๋ฐ˜์˜ ์ง๋ ฌ ๋‹ค์ค‘ ๋ ˆ์ธ ๊ทผ๊ฑฐ๋ฆฌ ํ†ต์‹  ๋งํฌ์ž…๋‹ˆ๋‹ค.

์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ NVLink๋Š” ๋” ๋น ๋ฅธ ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. [Nvidia Ampere GA102 GPU Architecture](https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf)์—์„œ ์•„๋ž˜์™€ ๊ฐ™์€ ์ •๋ณด๋ฅผ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

> 3์„ธ๋Œ€ NVLinkยฎ
> GA102 GPU๋Š” 4๊ฐœ์˜ x4 ๋งํฌ๋ฅผ ํฌํ•จํ•˜๋Š” NVIDIA์˜ 3์„ธ๋Œ€ NVLink ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ™œ์šฉํ•˜๋ฉฐ,
> ๊ฐ ๋งํฌ๋Š” ๋‘ ๊ฐœ์˜ GPU ๊ฐ„์— ๊ฐ ๋ฐฉํ–ฅ์œผ๋กœ ์ดˆ๋‹น 14.0625GB์˜ ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
> 4๊ฐœ์˜ ๋งํฌ๋Š” ๊ฐ ๋ฐฉํ–ฅ์— ์ดˆ๋‹น 56.25GB์˜ ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•˜๋ฉฐ, ๋‘ ๊ฐœ์˜ GPU ๊ฐ„์—๋Š” ์ดˆ๋‹น 112.5GB์˜ ์ด ๋Œ€์—ญํญ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
> ๋‘ ๊ฐœ์˜ RTX 3090 GPU๋ฅผ NVLink๋ฅผ ์‚ฌ์šฉํ•ด SLI๋กœ ์—ฐ๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
> (3-Way ๋ฐ 4-Way SLI ๊ตฌ์„ฑ์€ ์ง€์›๋˜์ง€ ์•Š์Œ์— ์œ ์˜ํ•˜์„ธ์š”.)


๋”ฐ๋ผ์„œ `nvidia-smi topo -m`์˜ ๊ฒฐ๊ณผ์—์„œ `NVX`์˜ ๊ฐ’์ด ๋†’์„์ˆ˜๋ก ๋” ์ข‹์Šต๋‹ˆ๋‹ค. ์„ธ๋Œ€๋Š” GPU ์•„ํ‚คํ…์ฒ˜์— ๋”ฐ๋ผ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ทธ๋ ‡๋‹ค๋ฉด, gpt2๋ฅผ ์ž‘์€ wikitext ์ƒ˜ํ”Œ๋กœ ํ•™์Šต์‹œํ‚ค๋Š” ์˜ˆ์ œ๋ฅผ ํ†ตํ•ด, NVLink๊ฐ€ ํ›ˆ๋ จ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:


| NVlink | Time |
| -----  | ---: |
| Y      | 101s |
| N      | 131s |


NVLink ์‚ฌ์šฉ ์‹œ ํ›ˆ๋ จ์ด ์•ฝ 23% ๋” ๋น ๋ฅด๊ฒŒ ์™„๋ฃŒ๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋ฒค์น˜๋งˆํฌ์—์„œ๋Š” `NCCL_P2P_DISABLE=1`์„ ์‚ฌ์šฉํ•˜์—ฌ NVLink๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ์„ค์ •ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ „์ฒด ๋ฒค์น˜๋งˆํฌ ์ฝ”๋“œ์™€ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

```bash
# DDP w/ NVLink

rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path gpt2 \
--dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train \
--output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200

{'train_runtime': 101.9003, 'train_samples_per_second': 1.963, 'epoch': 0.69}

# DDP w/o NVLink

rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 NCCL_P2P_DISABLE=1 python -m torch.distributed.launch \
--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path gpt2 \
--dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train
--output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200

{'train_runtime': 131.4367, 'train_samples_per_second': 1.522, 'epoch': 0.69}
```

ํ•˜๋“œ์›จ์–ด: ๊ฐ๊ฐ 2๊ฐœ์˜ TITAN RTX 24GB + 2๊ฐœ์˜ NVLink (`NV2` in `nvidia-smi topo -m`)
์†Œํ”„ํŠธ์›จ์–ด: `pytorch-1.8-to-be` + `cuda-11.0` / `transformers==4.3.0.dev0`