Spaces:
Paused
Paused
File size: 8,379 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
โ ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ๐ค PEFT๋ก ์ด๋ํฐ ๊ฐ์ ธ์ค๊ธฐ [[load-adapters-with-peft]]
[[open-in-colab]]
[Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) ๋ฐฉ๋ฒ์ ์ฌ์ ํ๋ จ๋ ๋ชจ๋ธ์ ๋งค๊ฐ๋ณ์๋ฅผ ๋ฏธ์ธ ์กฐ์ ์ค ๊ณ ์ ์ํค๊ณ , ๊ทธ ์์ ํ๋ จํ ์ ์๋ ๋งค์ฐ ์ ์ ์์ ๋งค๊ฐ๋ณ์(์ด๋ํฐ)๋ฅผ ์ถ๊ฐํฉ๋๋ค. ์ด๋ํฐ๋ ์์
๋ณ ์ ๋ณด๋ฅผ ํ์ตํ๋๋ก ํ๋ จ๋ฉ๋๋ค. ์ด ์ ๊ทผ ๋ฐฉ์์ ์์ ํ ๋ฏธ์ธ ์กฐ์ ๋ ๋ชจ๋ธ์ ํ์ ํ๋ ๊ฒฐ๊ณผ๋ฅผ ์์ฑํ๋ฉด์, ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ด๊ณ ๋น๊ต์ ์ ์ ์ปดํจํ
๋ฆฌ์์ค๋ฅผ ์ฌ์ฉํฉ๋๋ค.
๋ํ PEFT๋ก ํ๋ จ๋ ์ด๋ํฐ๋ ์ผ๋ฐ์ ์ผ๋ก ์ ์ฒด ๋ชจ๋ธ๋ณด๋ค ํจ์ฌ ์๊ธฐ ๋๋ฌธ์ ๊ณต์ , ์ ์ฅ ๋ฐ ๊ฐ์ ธ์ค๊ธฐ๊ฐ ํธ๋ฆฌํฉ๋๋ค.
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">Hub์ ์ ์ฅ๋ OPTForCausalLM ๋ชจ๋ธ์ ์ด๋ํฐ ๊ฐ์ค์น๋ ์ต๋ 700MB์ ๋ฌํ๋ ๋ชจ๋ธ ๊ฐ์ค์น์ ์ ์ฒด ํฌ๊ธฐ์ ๋นํด ์ฝ 6MB์ ๋ถ๊ณผํฉ๋๋ค.</figcaption>
</div>
๐ค PEFT ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ ๋ํด ์์ธํ ์์๋ณด๋ ค๋ฉด [๋ฌธ์](https://huggingface.co/docs/peft/index)๋ฅผ ํ์ธํ์ธ์.
## ์ค์ [[setup]]
๐ค PEFT๋ฅผ ์ค์นํ์ฌ ์์ํ์ธ์:
```bash
pip install peft
```
์๋ก์ด ๊ธฐ๋ฅ์ ์ฌ์ฉํด๋ณด๊ณ ์ถ๋ค๋ฉด, ๋ค์ ์์ค์์ ๋ผ์ด๋ธ๋ฌ๋ฆฌ๋ฅผ ์ค์นํ๋ ๊ฒ์ด ์ข์ต๋๋ค:
```bash
pip install git+https://github.com/huggingface/peft.git
```
## ์ง์๋๋ PEFT ๋ชจ๋ธ [[supported-peft-models]]
๐ค Transformers๋ ๊ธฐ๋ณธ์ ์ผ๋ก ์ผ๋ถ PEFT ๋ฐฉ๋ฒ์ ์ง์ํ๋ฉฐ, ๋ก์ปฌ์ด๋ Hub์ ์ ์ฅ๋ ์ด๋ํฐ ๊ฐ์ค์น๋ฅผ ๊ฐ์ ธ์ค๊ณ ๋ช ์ค์ ์ฝ๋๋ง์ผ๋ก ์ฝ๊ฒ ์คํํ๊ฑฐ๋ ํ๋ จํ ์ ์์ต๋๋ค. ๋ค์ ๋ฐฉ๋ฒ์ ์ง์ํฉ๋๋ค:
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
๐ค PEFT์ ๊ด๋ จ๋ ๋ค๋ฅธ ๋ฐฉ๋ฒ(์: ํ๋กฌํํธ ํ๋ จ ๋๋ ํ๋กฌํํธ ํ๋) ๋๋ ์ผ๋ฐ์ ์ธ ๐ค PEFT ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ ๋ํด ์์ธํ ์์๋ณด๋ ค๋ฉด [๋ฌธ์](https://huggingface.co/docs/peft/index)๋ฅผ ์ฐธ์กฐํ์ธ์.
## PEFT ์ด๋ํฐ ๊ฐ์ ธ์ค๊ธฐ [[load-a-peft-adapter]]
๐ค Transformers์์ PEFT ์ด๋ํฐ ๋ชจ๋ธ์ ๊ฐ์ ธ์ค๊ณ ์ฌ์ฉํ๋ ค๋ฉด Hub ์ ์ฅ์๋ ๋ก์ปฌ ๋๋ ํฐ๋ฆฌ์ `adapter_config.json` ํ์ผ๊ณผ ์ด๋ํฐ ๊ฐ์ค์น๊ฐ ํฌํจ๋์ด ์๋์ง ํ์ธํ์ญ์์ค. ๊ทธ๋ฐ ๋ค์ `AutoModelFor` ํด๋์ค๋ฅผ ์ฌ์ฉํ์ฌ PEFT ์ด๋ํฐ ๋ชจ๋ธ์ ๊ฐ์ ธ์ฌ ์ ์์ต๋๋ค. ์๋ฅผ ๋ค์ด ์ธ๊ณผ ๊ด๊ณ ์ธ์ด ๋ชจ๋ธ์ฉ PEFT ์ด๋ํฐ ๋ชจ๋ธ์ ๊ฐ์ ธ์ค๋ ค๋ฉด ๋ค์ ๋จ๊ณ๋ฅผ ๋ฐ๋ฅด์ญ์์ค:
1. PEFT ๋ชจ๋ธ ID๋ฅผ ์ง์ ํ์ญ์์ค.
2. [`AutoModelForCausalLM`] ํด๋์ค์ ์ ๋ฌํ์ญ์์ค.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
```
<Tip>
`AutoModelFor` ํด๋์ค๋ ๊ธฐ๋ณธ ๋ชจ๋ธ ํด๋์ค(์: `OPTForCausalLM` ๋๋ `LlamaForCausalLM`) ์ค ํ๋๋ฅผ ์ฌ์ฉํ์ฌ PEFT ์ด๋ํฐ๋ฅผ ๊ฐ์ ธ์ฌ ์ ์์ต๋๋ค.
</Tip>
`load_adapter` ๋ฉ์๋๋ฅผ ํธ์ถํ์ฌ PEFT ์ด๋ํฐ๋ฅผ ๊ฐ์ ธ์ฌ ์๋ ์์ต๋๋ค.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)
```
## 8๋นํธ ๋๋ 4๋นํธ๋ก ๊ฐ์ ธ์ค๊ธฐ [[load-in-8bit-or-4bit]]
`bitsandbytes` ํตํฉ์ 8๋นํธ์ 4๋นํธ ์ ๋ฐ๋ ๋ฐ์ดํฐ ์ ํ์ ์ง์ํ๋ฏ๋ก ํฐ ๋ชจ๋ธ์ ๊ฐ์ ธ์ฌ ๋ ์ ์ฉํ๋ฉด์ ๋ฉ๋ชจ๋ฆฌ๋ ์ ์ฝํฉ๋๋ค. ๋ชจ๋ธ์ ํ๋์จ์ด์ ํจ๊ณผ์ ์ผ๋ก ๋ถ๋ฐฐํ๋ ค๋ฉด [`~PreTrainedModel.from_pretrained`]์ `load_in_8bit` ๋๋ `load_in_4bit` ๋งค๊ฐ๋ณ์๋ฅผ ์ถ๊ฐํ๊ณ `device_map="auto"`๋ฅผ ์ค์ ํ์ธ์:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)
```
## ์ ์ด๋ํฐ ์ถ๊ฐ [[add-a-new-adapter]]
์ ์ด๋ํฐ๊ฐ ํ์ฌ ์ด๋ํฐ์ ๋์ผํ ์ ํ์ธ ๊ฒฝ์ฐ์ ํํด ๊ธฐ์กด ์ด๋ํฐ๊ฐ ์๋ ๋ชจ๋ธ์ ์ ์ด๋ํฐ๋ฅผ ์ถ๊ฐํ๋ ค๋ฉด [`~peft.PeftModel.add_adapter`]๋ฅผ ์ฌ์ฉํ ์ ์์ต๋๋ค. ์๋ฅผ ๋ค์ด ๋ชจ๋ธ์ ๊ธฐ์กด LoRA ์ด๋ํฐ๊ฐ ์ฐ๊ฒฐ๋์ด ์๋ ๊ฒฝ์ฐ:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
init_lora_weights=False
)
model.add_adapter(lora_config, adapter_name="adapter_1")
```
์ ์ด๋ํฐ๋ฅผ ์ถ๊ฐํ๋ ค๋ฉด:
```py
# attach new adapter with same config
model.add_adapter(lora_config, adapter_name="adapter_2")
```
์ด์ [`~peft.PeftModel.set_adapter`]๋ฅผ ์ฌ์ฉํ์ฌ ์ด๋ํฐ๋ฅผ ์ฌ์ฉํ ์ด๋ํฐ๋ก ์ค์ ํ ์ ์์ต๋๋ค:
```py
# use adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
# use adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
```
## ์ด๋ํฐ ํ์ฑํ ๋ฐ ๋นํ์ฑํ [[enable-and-disable-adapters]]
๋ชจ๋ธ์ ์ด๋ํฐ๋ฅผ ์ถ๊ฐํ ํ ์ด๋ํฐ ๋ชจ๋์ ํ์ฑํ ๋๋ ๋นํ์ฑํํ ์ ์์ต๋๋ค. ์ด๋ํฐ ๋ชจ๋์ ํ์ฑํํ๋ ค๋ฉด:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
# to initiate with random weights
peft_config.init_lora_weights = False
model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)
```
์ด๋ํฐ ๋ชจ๋์ ๋นํ์ฑํํ๋ ค๋ฉด:
```py
model.disable_adapters()
output = model.generate(**inputs)
```
## PEFT ์ด๋ํฐ ํ๋ จ [[train-a-peft-adapter]]
PEFT ์ด๋ํฐ๋ [`Trainer`] ํด๋์ค์์ ์ง์๋๋ฏ๋ก ํน์ ์ฌ์ฉ ์ฌ๋ก์ ๋ง๊ฒ ์ด๋ํฐ๋ฅผ ํ๋ จํ ์ ์์ต๋๋ค. ๋ช ์ค์ ์ฝ๋๋ฅผ ์ถ๊ฐํ๊ธฐ๋ง ํ๋ฉด ๋ฉ๋๋ค. ์๋ฅผ ๋ค์ด LoRA ์ด๋ํฐ๋ฅผ ํ๋ จํ๋ ค๋ฉด:
<Tip>
[`Trainer`]๋ฅผ ์ฌ์ฉํ์ฌ ๋ชจ๋ธ์ ๋ฏธ์ธ ์กฐ์ ํ๋ ๊ฒ์ด ์ต์ํ์ง ์๋ค๋ฉด [์ฌ์ ํ๋ จ๋ ๋ชจ๋ธ์ ๋ฏธ์ธ ์กฐ์ ํ๊ธฐ](training) ํํ ๋ฆฌ์ผ์ ํ์ธํ์ธ์.
</Tip>
1. ์์
์ ํ ๋ฐ ํ์ดํผํ๋ผ๋ฏธํฐ๋ฅผ ์ง์ ํ์ฌ ์ด๋ํฐ ๊ตฌ์ฑ์ ์ ์ํฉ๋๋ค. ํ์ดํผํ๋ผ๋ฏธํฐ์ ๋ํ ์์ธํ ๋ด์ฉ์ [`~peft.LoraConfig`]๋ฅผ ์ฐธ์กฐํ์ธ์.
```py
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
)
```
2. ๋ชจ๋ธ์ ์ด๋ํฐ๋ฅผ ์ถ๊ฐํฉ๋๋ค.
```py
model.add_adapter(peft_config)
```
3. ์ด์ ๋ชจ๋ธ์ [`Trainer`]์ ์ ๋ฌํ ์ ์์ต๋๋ค!
```py
trainer = Trainer(model=model, ...)
trainer.train()
```
ํ๋ จํ ์ด๋ํฐ๋ฅผ ์ ์ฅํ๊ณ ๋ค์ ๊ฐ์ ธ์ค๋ ค๋ฉด:
```py
model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)
```
|