File size: 11,709 Bytes
cb0d40a
 
 
 
 
c046d7f
cb0d40a
c046d7f
 
 
cb0d40a
 
 
 
 
 
c046d7f
cb0d40a
 
 
 
 
c046d7f
 
 
 
cb0d40a
 
 
c046d7f
 
 
 
cb0d40a
 
 
c046d7f
 
 
 
cb0d40a
 
 
 
 
 
 
c046d7f
 
 
 
cb0d40a
c046d7f
 
 
cb0d40a
 
 
 
 
 
 
 
 
 
 
 
 
c046d7f
 
 
cb0d40a
 
c046d7f
cb0d40a
 
 
c046d7f
cb0d40a
c046d7f
 
 
cb0d40a
 
 
c046d7f
cb0d40a
 
c046d7f
 
cb0d40a
 
 
c046d7f
cb0d40a
 
 
 
 
 
 
 
 
 
 
 
 
 
c046d7f
 
 
 
 
cb0d40a
 
 
 
c046d7f
 
 
 
 
cb0d40a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c046d7f
 
 
cb0d40a
c046d7f
cb0d40a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c046d7f
cb0d40a
 
 
 
 
 
 
c046d7f
cb0d40a
 
 
 
 
 
c046d7f
cb0d40a
 
 
 
c046d7f
cb0d40a
 
 
c046d7f
cb0d40a
 
c046d7f
 
 
 
 
 
cb0d40a
 
 
 
 
 
 
c046d7f
cb0d40a
 
 
c046d7f
cb0d40a
 
c046d7f
cb0d40a
c046d7f
cb0d40a
 
 
 
 
 
c046d7f
cb0d40a
 
 
 
 
 
 
 
c046d7f
 
cb0d40a
 
 
c046d7f
 
 
 
cb0d40a
 
 
 
 
 
c046d7f
cb0d40a
 
c046d7f
cb0d40a
 
 
 
c046d7f
 
 
 
 
cb0d40a
 
 
 
 
c046d7f
cb0d40a
 
 
 
c046d7f
cb0d40a
 
 
 
c046d7f
 
 
 
cb0d40a
 
 
 
 
 
 
 
 
 
 
 
 
 
c046d7f
cb0d40a
 
c046d7f
cb0d40a
 
 
 
 
 
 
c046d7f
cb0d40a
c046d7f
cb0d40a
 
 
 
c046d7f
cb0d40a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import numpy as np
import torch
import torch.nn as nn
from tqdm.auto import tqdm


class ContextUnet(nn.Module):
    def __init__(
        self, in_channels, n_feat=256, n_cfeat=10, height=28
    ):  # cfeat - context features
        super(ContextUnet, self).__init__()

        # number of input channels, number of intermediate feature maps and number of classes
        self.in_channels = in_channels
        self.n_feat = n_feat
        self.n_cfeat = n_cfeat
        self.h = height  # assume h == w. must be divisible by 4, so 28,24,20,16...

        # Initialize the initial convolutional layer
        self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)

        # Initialize the down-sampling path of the U-Net with two levels
        self.down1 = UnetDown(n_feat, n_feat)  # down1 #[10, 256, 8, 8]
        self.down2 = UnetDown(n_feat, 2 * n_feat)  # down2 #[10, 256, 4,  4]

        # original: self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
        self.to_vec = nn.Sequential(nn.AvgPool2d((4)), nn.GELU())

        # Embed the timestep and context labels with a one-layer fully connected neural network
        self.timeembed1 = EmbedFC(1, 2 * n_feat)
        self.timeembed2 = EmbedFC(1, 1 * n_feat)
        self.contextembed1 = EmbedFC(n_cfeat, 2 * n_feat)
        self.contextembed2 = EmbedFC(n_cfeat, 1 * n_feat)

        # Initialize the up-sampling path of the U-Net with three levels
        self.up0 = nn.Sequential(
            nn.ConvTranspose2d(
                2 * n_feat, 2 * n_feat, self.h // 4, self.h // 4
            ),  # up-sample
            nn.GroupNorm(8, 2 * n_feat),  # normalize
            nn.ReLU(),
        )
        self.up1 = UnetUp(4 * n_feat, n_feat)
        self.up2 = UnetUp(2 * n_feat, n_feat)

        # Initialize the final convolutional layers to map to the same number of channels as the input image
        self.out = nn.Sequential(
            nn.Conv2d(
                2 * n_feat, n_feat, 3, 1, 1
            ),  # reduce number of feature maps   #in_channels, out_channels, kernel_size, stride=1, padding=0
            nn.GroupNorm(8, n_feat),  # normalize
            nn.ReLU(),
            nn.Conv2d(
                n_feat, self.in_channels, 3, 1, 1
            ),  # map to same number of channels as input
        )

    def forward(self, x, t, c=None):
        """
        x : (batch, n_feat, h, w) : input image
        t : (batch, n_cfeat)      : time step
        c : (batch, n_classes)    : context label
        """
        # x is the input image, c is the context label, t is the timestep, context_mask says which samples to block the context on

        # pass the input image through the initial convolutional layer
        x = self.init_conv(x)
        # pass the result through the down-sampling path
        down1 = self.down1(x)  # [10, 256, 8, 8]
        down2 = self.down2(down1)  # [10, 256, 4, 4]

        # convert the feature maps to a vector and apply an activation
        hiddenvec = self.to_vec(down2)

        # mask out context if context_mask == 1
        if c is None:
            c = torch.zeros(x.shape[0], self.n_cfeat).to(x)

        # embed context and timestep
        cemb1 = self.contextembed1(c).view(
            -1, self.n_feat * 2, 1, 1
        )  # (batch, 2*n_feat, 1,1)
        temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
        cemb2 = self.contextembed2(c).view(-1, self.n_feat, 1, 1)
        temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
        # print(f"uunet forward: cemb1 {cemb1.shape}. temb1 {temb1.shape}, cemb2 {cemb2.shape}. temb2 {temb2.shape}")

        up1 = self.up0(hiddenvec)
        up2 = self.up1(cemb1 * up1 + temb1, down2)  # add and multiply embeddings
        up3 = self.up2(cemb2 * up2 + temb2, down1)
        out = self.out(torch.cat((up3, x), 1))
        return out


class ResidualConvBlock(nn.Module):
    def __init__(
        self, in_channels: int, out_channels: int, is_res: bool = False
    ) -> None:
        super().__init__()

        # Check if input and output channels are the same for the residual connection
        self.same_channels = in_channels == out_channels

        # Flag for whether or not to use residual connection
        self.is_res = is_res

        # First convolutional layer
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels, out_channels, 3, 1, 1
            ),  # 3x3 kernel with stride 1 and padding 1
            nn.BatchNorm2d(out_channels),  # Batch normalization
            nn.GELU(),  # GELU activation function
        )

        # Second convolutional layer
        self.conv2 = nn.Sequential(
            nn.Conv2d(
                out_channels, out_channels, 3, 1, 1
            ),  # 3x3 kernel with stride 1 and padding 1
            nn.BatchNorm2d(out_channels),  # Batch normalization
            nn.GELU(),  # GELU activation function
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # If using residual connection
        if self.is_res:
            # Apply first convolutional layer
            x1 = self.conv1(x)

            # Apply second convolutional layer
            x2 = self.conv2(x1)

            # If input and output channels are the same, add residual connection directly
            if self.same_channels:
                out = x + x2
            else:
                # If not, apply a 1x1 convolutional layer to match dimensions before adding residual connection
                shortcut = nn.Conv2d(
                    x.shape[1], x2.shape[1], kernel_size=1, stride=1, padding=0
                ).to(x.device)
                out = shortcut(x) + x2
            # print(f"resconv forward: x {x.shape}, x1 {x1.shape}, x2 {x2.shape}, out {out.shape}")

            # Normalize output tensor
            return out / 1.414

        # If not using residual connection, return output of second convolutional layer
        else:
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x2

    # Method to get the number of output channels for this block
    def get_out_channels(self):
        return self.conv2[0].out_channels

    # Method to set the number of output channels for this block
    def set_out_channels(self, out_channels):
        self.conv1[0].out_channels = out_channels
        self.conv2[0].in_channels = out_channels
        self.conv2[0].out_channels = out_channels


class UnetUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetUp, self).__init__()

        # Create a list of layers for the upsampling block
        # The block consists of a ConvTranspose2d layer for upsampling, followed by two ResidualConvBlock layers
        layers = [
            nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
            ResidualConvBlock(out_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
        ]

        # Use the layers to create a sequential model
        self.model = nn.Sequential(*layers)

    def forward(self, x, skip):
        # Concatenate the input tensor x with the skip connection tensor along the channel dimension
        x = torch.cat((x, skip), 1)

        # Pass the concatenated tensor through the sequential model and return the output
        x = self.model(x)
        return x


class UnetDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UnetDown, self).__init__()

        # Create a list of layers for the downsampling block
        # Each block consists of two ResidualConvBlock layers, followed by a MaxPool2d layer for downsampling
        layers = [
            ResidualConvBlock(in_channels, out_channels),
            ResidualConvBlock(out_channels, out_channels),
            nn.MaxPool2d(2),
        ]

        # Use the layers to create a sequential model
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        # Pass the input through the sequential model and return the output
        return self.model(x)


class EmbedFC(nn.Module):
    def __init__(self, input_dim, emb_dim):
        super(EmbedFC, self).__init__()
        """
        This class defines a generic one layer feed-forward neural network for embedding input data of
        dimensionality input_dim to an embedding space of dimensionality emb_dim.
        """
        self.input_dim = input_dim

        # define the layers for the network
        layers = [
            nn.Linear(input_dim, emb_dim),
            nn.GELU(),
            nn.Linear(emb_dim, emb_dim),
        ]

        # create a PyTorch sequential model consisting of the defined layers
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        # flatten the input tensor
        x = x.view(-1, self.input_dim)
        # apply the model layers to the flattened tensor
        return self.model(x)


def unorm(x):
    # unity norm. results in range of [0,1]
    # assume x (h,w,3)
    xmax = x.max((0, 1))
    xmin = x.min((0, 1))
    return (x - xmin) / (xmax - xmin)


def norm_all(store, n_t, n_s):
    # runs unity norm on all timesteps of all samples
    nstore = np.zeros_like(store)
    for t in range(n_t):
        for s in range(n_s):
            nstore[t, s] = unorm(store[t, s])
    return nstore


def norm_torch(x_all):
    # runs unity norm on all timesteps of all samples
    # input is (n_samples, 3,h,w), the torch image format
    x = x_all.cpu().numpy()
    xmax = x.max((2, 3))
    xmin = x.min((2, 3))
    xmax = np.expand_dims(xmax, (2, 3))
    xmin = np.expand_dims(xmin, (2, 3))
    nstore = (x - xmin) / (xmax - xmin)
    return torch.from_numpy(nstore)


## diffusion functions


def setup_ddpm(beta1, beta2, timesteps, device):
    # construct DDPM noise schedule and sampling functions
    b_t = (beta2 - beta1) * torch.linspace(0, 1, timesteps + 1, device=device) + beta1
    a_t = 1 - b_t
    ab_t = torch.cumsum(a_t.log(), dim=0).exp()
    ab_t[0] = 1

    # helper function: perturbs an image to a specified noise level
    def perturb_input(x, t, noise):
        return (
            ab_t.sqrt()[t, None, None, None] * x
            + (1 - ab_t[t, None, None, None]) * noise
        )

    # helper function; removes the predicted noise (but adds some noise back in to avoid collapse)
    def _denoise_add_noise(x, t, pred_noise, z=None):
        if z is None:
            z = torch.randn_like(x)
        noise = b_t.sqrt()[t] * z
        mean = (x - pred_noise * ((1 - a_t[t]) / (1 - ab_t[t]).sqrt())) / a_t[t].sqrt()
        return mean + noise

    # sample with context using standard algorithm
    # we make a change to the original algorithm to allow for context explicitely (the noises)
    @torch.no_grad()
    def sample_ddpm_context(nn_model, noises, context, save_rate=20):
        # array to keep track of generated steps for plotting
        intermediate = []
        pbar = tqdm(range(timesteps, 0, -1), leave=False)
        for i in pbar:
            pbar.set_description(f"sampling timestep {i:3d}")

            # reshape time tensor
            t = torch.tensor([i / timesteps])[:, None, None, None].to(noises.device)

            # sample some random noise to inject back in. For i = 1, don't add back in noise
            z = torch.randn_like(noises) if i > 1 else 0

            eps = nn_model(noises, t, c=context)  # predict noise e_(x_t,t, ctx)
            noises = _denoise_add_noise(noises, i, eps, z)
            if i % save_rate == 0 or i == timesteps or i < 8:
                intermediate.append(noises.detach().cpu().numpy())

        intermediate = np.stack(intermediate)
        return noises.clip(-1, 1), intermediate

    return perturb_input, sample_ddpm_context