from langchain.chains import ConversationChain from langchain.prompts import PromptTemplate def generate_prompt(input_variables: list, template_file: str): """ Generate a prompt from a template file and a list of input variables """ with open(template_file, 'r', encoding='utf-8') as source_file: template = source_file.read() prompt = PromptTemplate(template=template, input_variables=input_variables) return prompt def generate_conversation(memory: object, llm: object, prompt: object, verbose: bool = False): """ Generate a conversation from a memory object, a language model object, and a prompt object """ conversation = ConversationChain(memory=memory, llm=llm, prompt=prompt, verbose=verbose) return conversation def predict(input_text: str, conversation: object): ''' Predict the next response from the conversation object ''' response = conversation(input_text) history = response['history'] history = history.split('\n') prediction = response['response'] return {'history': history, 'prediction': prediction}