from flask import Flask,request,render_template import numpy as np import pandas as pd import logging from sklearn.preprocessing import StandardScaler from src.pipeline.predict_pipeline import CustomData,PredictPipeline application=Flask(__name__) app=application ## Route for a home page @app.route('/',methods=['GET','POST']) def predict_datapoint(): if request.method=='GET': return render_template('home.html') else: data=CustomData( gender=request.form.get('gender'), race_ethnicity=request.form.get('ethnicity'), parental_level_of_education=request.form.get('parental_level_of_education'), lunch=request.form.get('lunch'), test_preparation_course=request.form.get('test_preparation_course'), reading_score=float(request.form.get('writing_score')), writing_score=float(request.form.get('reading_score')) ) pred_df=data.get_data_as_data_frame() print(pred_df) print("Before Prediction") predict_pipeline=PredictPipeline() print("Mid Prediction") results=predict_pipeline.predict(pred_df) print("after Prediction") return render_template('home.html',results=results[0]) if __name__=="__main__": logging.basicConfig(level=logging.DEBUG) app.run(debug=True,port=7860,host="0.0.0.0")