import os import sys import numpy as np import pandas as pd import dill from sklearn.metrics import r2_score from sklearn.model_selection import GridSearchCV from src.exception import CustomException def save_object(file_path, obj): try: dir_path = os.path.dirname(file_path) os.makedirs(dir_path, exist_ok=True) with open(file_path, "wb") as file_obj: dill.dump(obj, file_obj) except Exception as e: raise CustomException(e, sys) def evaluate_models(X_train,y_train,X_test,y_test,models,param): try: report={} for i in range(len(list(models))): model=list(models.values())[i] para=param[list(models.keys())[i]] gs = GridSearchCV(model,para,cv=3) gs.fit(X_train,y_train) model.set_params(**gs.best_params_) model.fit(X_train,y_train) y_train_pred=model.predict(X_train) y_test_pred=model.predict(X_test) train_model_score=r2_score(y_train,y_train_pred) test_model_score=r2_score(y_test,y_test_pred) report[list(models.keys())[i]]=test_model_score return report except Exception as e: raise CustomException(e, sys) def load_object(file_path): try: with open(file_path, "rb") as file_obj: return dill.load(file_obj) except Exception as e: raise CustomException(e, sys)