Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import time | |
from src.exception import CustomException | |
from src.logger import logging | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from dataclasses import dataclass | |
from src.components.data_transformation import DataTransformation | |
from src.components.data_transformation import DataTransformationConfig | |
from src.components.model_trainer import ModelTrainerConfig | |
from src.components.model_trainer import ModelTrainer | |
class DataIngestionConfig: | |
train_data_path: str=os.path.join('artifacts',"train.csv") | |
test_data_path: str=os.path.join('artifacts',"test.csv") | |
raw_data_path: str=os.path.join('artifacts',"data.csv") | |
class DataIngestion: | |
def __init__(self): | |
self.ingestion_config=DataIngestionConfig() | |
def initiate_data_ingestion(self): | |
logging.info("Entered the data ingestion method or component") | |
try: | |
df=pd.read_csv('notebook/data/stud.csv') | |
logging.info('Read the dataset as dataframe') | |
os.makedirs(os.path.dirname(self.ingestion_config.train_data_path),exist_ok=True) | |
df.to_csv(self.ingestion_config.raw_data_path,index=False,header=True) | |
logging.info("Train test split initiated") | |
train_set,test_set=train_test_split(df,test_size=0.2,random_state=42) | |
train_set.to_csv(self.ingestion_config.train_data_path,index=False,header=True) | |
test_set.to_csv(self.ingestion_config.test_data_path,index=False,header=True) | |
logging.info("Inmgestion of the data iss completed") | |
return( | |
self.ingestion_config.train_data_path, | |
self.ingestion_config.test_data_path | |
) | |
except Exception as e: | |
raise CustomException(e,sys) | |
if __name__=="__main__": | |
obj=DataIngestion() | |
train_data,test_data=obj.initiate_data_ingestion() | |
data_transformation=DataTransformation() | |
train_arr,test_arr,_=data_transformation.initiate_data_transformation(train_data,test_data) | |
modeltrainer=ModelTrainer() | |
print(modeltrainer.initiate_model_trainer(train_arr,test_arr)) | |