import torch import gradio as gr from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler from diffusers.utils import export_to_video import os device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def generate_video(prompt): # load pipeline pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) # optimize for GPU memory pipe.enable_model_cpu_offload() pipe.enable_vae_slicing() # generate video_frames = pipe(prompt, num_inference_steps=25, num_frames=200).frames # get absolute path to current working directory current_directory = os.getcwd() # create directory to store video video_directory = os.path.join(current_directory, "generated_videos") os.makedirs(video_directory, exist_ok=True) # convert to video video_path = export_to_video(video_frames, os.path.join(video_directory, "generated_video.mp4")) return video_path demo = gr.Interface(fn=generate_video, inputs="text", outputs="video") demo.launch(share=True)