Upload folder using huggingface_hub
Browse files- README.md +5 -2
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +5 -5
README.md
CHANGED
@@ -9,11 +9,14 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
|
|
|
|
|
|
|
|
12 |
@InProceedings{VideoFusion,
|
13 |
author = {Luo, Zhengxiong and Chen, Dayou and Zhang, Yingya and Huang, Yan and Wang, Liang and Shen, Yujun and Zhao, Deli and Zhou, Jingren and Tan, Tieniu},
|
14 |
title = {VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation},
|
15 |
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
16 |
month = {June},
|
17 |
year = {2023}
|
18 |
-
}
|
19 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
|
16 |
@InProceedings{VideoFusion,
|
17 |
author = {Luo, Zhengxiong and Chen, Dayou and Zhang, Yingya and Huang, Yan and Wang, Liang and Shen, Yujun and Zhao, Deli and Zhou, Jingren and Tan, Tieniu},
|
18 |
title = {VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation},
|
19 |
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
20 |
month = {June},
|
21 |
year = {2023}
|
22 |
+
}
|
|
__pycache__/app.cpython-310.pyc
ADDED
Binary file (900 Bytes). View file
|
|
app.py
CHANGED
@@ -3,12 +3,12 @@ import gradio as gr
|
|
3 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
4 |
from diffusers.utils import export_to_video
|
5 |
|
6 |
-
|
7 |
|
8 |
def generate_video(prompt):
|
9 |
# load pipeline
|
10 |
-
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
|
11 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
12 |
|
13 |
# optimize for GPU memory
|
14 |
pipe.enable_model_cpu_offload()
|
@@ -21,5 +21,5 @@ def generate_video(prompt):
|
|
21 |
video_path = export_to_video(video_frames)
|
22 |
return video_path
|
23 |
|
24 |
-
|
25 |
-
|
|
|
3 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
4 |
from diffusers.utils import export_to_video
|
5 |
|
6 |
+
|
7 |
|
8 |
def generate_video(prompt):
|
9 |
# load pipeline
|
10 |
+
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
11 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config).to("cuda")
|
12 |
|
13 |
# optimize for GPU memory
|
14 |
pipe.enable_model_cpu_offload()
|
|
|
21 |
video_path = export_to_video(video_frames)
|
22 |
return video_path
|
23 |
|
24 |
+
demo = gr.Interface(fn=generate_video, inputs="text", outputs="file")
|
25 |
+
demo.launch(share=True)
|