Spaces:
Runtime error
Runtime error
add sdxl
Browse files- app.py +91 -27
- requirements.txt +8 -3
app.py
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import tempfile
|
|
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import rembg
|
8 |
import spaces
|
9 |
import torch
|
10 |
-
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
11 |
from einops import rearrange
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
from omegaconf import OmegaConf
|
14 |
from PIL import Image
|
15 |
from pytorch_lightning import seed_everything
|
|
|
16 |
from torchvision.transforms import v2
|
17 |
from tqdm import tqdm
|
18 |
|
@@ -22,6 +25,26 @@ from src.utils.infer_util import (remove_background, resize_foreground)
|
|
22 |
from src.utils.mesh_util import save_glb, save_obj
|
23 |
from src.utils.train_util import instantiate_from_config
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def find_cuda():
|
27 |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
@@ -52,7 +75,7 @@ def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexi
|
|
52 |
|
53 |
def check_input_image(input_image):
|
54 |
if input_image is None:
|
55 |
-
raise gr.Error("No image
|
56 |
|
57 |
|
58 |
def preprocess(input_image, do_remove_background):
|
@@ -125,6 +148,21 @@ def make3d(images):
|
|
125 |
return mesh_fpath, mesh_glb_fpath
|
126 |
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
# Configuration
|
129 |
cuda_path = find_cuda()
|
130 |
config_path = 'configs/instant-mesh-large.yaml'
|
@@ -166,6 +204,21 @@ model.load_state_dict(state_dict, strict=True)
|
|
166 |
|
167 |
model = model.to(device)
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
print('Loading Finished!')
|
170 |
|
171 |
# Gradio UI
|
@@ -173,19 +226,28 @@ with gr.Blocks() as demo:
|
|
173 |
with gr.Row(variant="panel"):
|
174 |
with gr.Column():
|
175 |
with gr.Row():
|
176 |
-
|
177 |
-
label="
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
image_mode="RGBA",
|
186 |
type="pil",
|
187 |
interactive=False
|
188 |
)
|
|
|
189 |
with gr.Row():
|
190 |
with gr.Group():
|
191 |
do_remove_background = gr.Checkbox(
|
@@ -196,18 +258,8 @@ with gr.Blocks() as demo:
|
|
196 |
label="Sample Steps", minimum=30, maximum=75, value=75, step=5)
|
197 |
|
198 |
with gr.Row():
|
199 |
-
|
200 |
-
"Generate", elem_id="generate", variant="primary")
|
201 |
-
|
202 |
-
with gr.Row(variant="panel"):
|
203 |
-
gr.Examples(
|
204 |
-
examples=[os.path.join("examples", img_name)
|
205 |
-
for img_name in sorted(os.listdir("examples"))],
|
206 |
-
inputs=[input_image],
|
207 |
-
label="Examples",
|
208 |
-
cache_examples=False,
|
209 |
-
examples_per_page=16
|
210 |
-
)
|
211 |
|
212 |
with gr.Column():
|
213 |
with gr.Row():
|
@@ -241,13 +293,25 @@ with gr.Blocks() as demo:
|
|
241 |
|
242 |
mv_images = gr.State()
|
243 |
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
fn=preprocess,
|
246 |
-
inputs=[
|
247 |
-
outputs=[
|
248 |
).success(
|
249 |
fn=generate_mvs,
|
250 |
-
inputs=[
|
251 |
outputs=[mv_images, mv_show_images]
|
252 |
).success(
|
253 |
fn=make3d,
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import tempfile
|
4 |
+
import time
|
5 |
+
from os import path
|
6 |
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
import rembg
|
10 |
import spaces
|
11 |
import torch
|
12 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLPipeline, LCMScheduler
|
13 |
from einops import rearrange
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
from omegaconf import OmegaConf
|
16 |
from PIL import Image
|
17 |
from pytorch_lightning import seed_everything
|
18 |
+
from safetensors.torch import load_file
|
19 |
from torchvision.transforms import v2
|
20 |
from tqdm import tqdm
|
21 |
|
|
|
25 |
from src.utils.mesh_util import save_glb, save_obj
|
26 |
from src.utils.train_util import instantiate_from_config
|
27 |
|
28 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
29 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
30 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
31 |
+
os.environ["HF_HOME"] = cache_path
|
32 |
+
|
33 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
34 |
+
|
35 |
+
|
36 |
+
class timer:
|
37 |
+
def __init__(self, method_name="timed process"):
|
38 |
+
self.method = method_name
|
39 |
+
|
40 |
+
def __enter__(self):
|
41 |
+
self.start = time.time()
|
42 |
+
print(f"{self.method} starts")
|
43 |
+
|
44 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
45 |
+
end = time.time()
|
46 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
47 |
+
|
48 |
|
49 |
def find_cuda():
|
50 |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
|
|
75 |
|
76 |
def check_input_image(input_image):
|
77 |
if input_image is None:
|
78 |
+
raise gr.Error("No image selected!")
|
79 |
|
80 |
|
81 |
def preprocess(input_image, do_remove_background):
|
|
|
148 |
return mesh_fpath, mesh_glb_fpath
|
149 |
|
150 |
|
151 |
+
@spaces.GPU
|
152 |
+
def process_image(num_images, height, width, prompt, seed):
|
153 |
+
global pipe
|
154 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
155 |
+
return pipe(
|
156 |
+
prompt=[prompt]*num_images,
|
157 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
158 |
+
num_inference_steps=1,
|
159 |
+
guidance_scale=0.,
|
160 |
+
height=int(height),
|
161 |
+
width=int(width),
|
162 |
+
timesteps=[800]
|
163 |
+
).images
|
164 |
+
|
165 |
+
|
166 |
# Configuration
|
167 |
cuda_path = find_cuda()
|
168 |
config_path = 'configs/instant-mesh-large.yaml'
|
|
|
204 |
|
205 |
model = model.to(device)
|
206 |
|
207 |
+
# Load text-to-image model
|
208 |
+
print('Loading text-to-image model ...')
|
209 |
+
if not path.exists(cache_path):
|
210 |
+
os.makedirs(cache_path, exist_ok=True)
|
211 |
+
|
212 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
213 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16)
|
214 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
215 |
+
|
216 |
+
unet_state = load_file(hf_hub_download(
|
217 |
+
"ByteDance/Hyper-SD", "Hyper-SDXL-1step-Unet.safetensors"), device="cuda")
|
218 |
+
pipe.unet.load_state_dict(unet_state)
|
219 |
+
pipe.scheduler = LCMScheduler.from_config(
|
220 |
+
pipe.scheduler.config, timestep_spacing="trailing")
|
221 |
+
|
222 |
print('Loading Finished!')
|
223 |
|
224 |
# Gradio UI
|
|
|
226 |
with gr.Row(variant="panel"):
|
227 |
with gr.Column():
|
228 |
with gr.Row():
|
229 |
+
num_images = gr.Slider(
|
230 |
+
label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
|
231 |
+
height = gr.Number(label="Image Height",
|
232 |
+
value=1024, interactive=True)
|
233 |
+
width = gr.Number(label="Image Width",
|
234 |
+
value=1024, interactive=True)
|
235 |
+
prompt = gr.Text(
|
236 |
+
label="Prompt", value="a photo of a cat", interactive=True)
|
237 |
+
seed = gr.Number(label="Seed", value=3413, interactive=True)
|
238 |
+
generate_2d_btn = gr.Button(value="Generate 2D Images")
|
239 |
+
|
240 |
+
with gr.Row():
|
241 |
+
generated_images = gr.Gallery(height=1024)
|
242 |
+
|
243 |
+
with gr.Row():
|
244 |
+
selected_image = gr.Image(
|
245 |
+
label="Selected Image",
|
246 |
image_mode="RGBA",
|
247 |
type="pil",
|
248 |
interactive=False
|
249 |
)
|
250 |
+
|
251 |
with gr.Row():
|
252 |
with gr.Group():
|
253 |
do_remove_background = gr.Checkbox(
|
|
|
258 |
label="Sample Steps", minimum=30, maximum=75, value=75, step=5)
|
259 |
|
260 |
with gr.Row():
|
261 |
+
generate_3d_btn = gr.Button(
|
262 |
+
"Generate 3D Model", elem_id="generate", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
with gr.Column():
|
265 |
with gr.Row():
|
|
|
293 |
|
294 |
mv_images = gr.State()
|
295 |
|
296 |
+
generate_2d_btn.click(
|
297 |
+
fn=process_image,
|
298 |
+
inputs=[num_images, height, width, prompt, seed],
|
299 |
+
outputs=[generated_images]
|
300 |
+
)
|
301 |
+
|
302 |
+
generated_images.select(
|
303 |
+
fn=lambda x: x,
|
304 |
+
inputs=[generated_images],
|
305 |
+
outputs=[selected_image]
|
306 |
+
)
|
307 |
+
|
308 |
+
generate_3d_btn.click(fn=check_input_image, inputs=[selected_image]).success(
|
309 |
fn=preprocess,
|
310 |
+
inputs=[selected_image, do_remove_background],
|
311 |
+
outputs=[selected_image],
|
312 |
).success(
|
313 |
fn=generate_mvs,
|
314 |
+
inputs=[selected_image, sample_steps, sample_seed],
|
315 |
outputs=[mv_images, mv_show_images]
|
316 |
).success(
|
317 |
fn=make3d,
|
requirements.txt
CHANGED
@@ -12,12 +12,17 @@ tensorboard
|
|
12 |
PyMCubes
|
13 |
trimesh
|
14 |
rembg
|
15 |
-
transformers==4.
|
16 |
-
diffusers==0.
|
17 |
bitsandbytes
|
18 |
imageio[ffmpeg]
|
19 |
xatlas
|
20 |
plyfile
|
21 |
xformers==0.0.22.post7
|
22 |
git+https://github.com/NVlabs/nvdiffrast/
|
23 |
-
huggingface-hub
|
|
|
|
|
|
|
|
|
|
|
|
12 |
PyMCubes
|
13 |
trimesh
|
14 |
rembg
|
15 |
+
transformers==4.38.2
|
16 |
+
diffusers==0.25.0
|
17 |
bitsandbytes
|
18 |
imageio[ffmpeg]
|
19 |
xatlas
|
20 |
plyfile
|
21 |
xformers==0.0.22.post7
|
22 |
git+https://github.com/NVlabs/nvdiffrast/
|
23 |
+
huggingface-hub
|
24 |
+
|
25 |
+
httpx==0.23.0
|
26 |
+
flask
|
27 |
+
pillow
|
28 |
+
safetensors
|