Upload 3 files
Browse files- .gitattributes +1 -0
- app.py +156 -0
- requirements.txt +6 -0
- thmbnail.jpg +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
thmbnail.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
model = whisper.load_model("base")
|
6 |
+
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")
|
7 |
+
|
8 |
+
def analyze_sentiment(text):
|
9 |
+
results = sentiment_analysis(text)
|
10 |
+
sentiment_results = {result['label']: result['score'] for result in results}
|
11 |
+
return sentiment_results
|
12 |
+
|
13 |
+
def get_sentiment_emoji(sentiment):
|
14 |
+
# Define the emojis corresponding to each sentiment
|
15 |
+
emoji_mapping = {
|
16 |
+
"disappointment": "๐",
|
17 |
+
"sadness": "๐ข",
|
18 |
+
"annoyance": "๐ ",
|
19 |
+
"neutral": "๐",
|
20 |
+
"disapproval": "๐",
|
21 |
+
"realization": "๐ฎ",
|
22 |
+
"nervousness": "๐ฌ",
|
23 |
+
"approval": "๐",
|
24 |
+
"joy": "๐",
|
25 |
+
"anger": "๐ก",
|
26 |
+
"embarrassment": "๐ณ",
|
27 |
+
"caring": "๐ค",
|
28 |
+
"remorse": "๐",
|
29 |
+
"disgust": "๐คข",
|
30 |
+
"grief": "๐ฅ",
|
31 |
+
"confusion": "๐",
|
32 |
+
"relief": "๐",
|
33 |
+
"desire": "๐",
|
34 |
+
"admiration": "๐",
|
35 |
+
"optimism": "๐",
|
36 |
+
"fear": "๐จ",
|
37 |
+
"love": "โค๏ธ",
|
38 |
+
"excitement": "๐",
|
39 |
+
"curiosity": "๐ค",
|
40 |
+
"amusement": "๐",
|
41 |
+
"surprise": "๐ฒ",
|
42 |
+
"gratitude": "๐",
|
43 |
+
"pride": "๐ฆ"
|
44 |
+
}
|
45 |
+
return emoji_mapping.get(sentiment, "")
|
46 |
+
|
47 |
+
def display_sentiment_results(sentiment_results, option):
|
48 |
+
sentiment_text = ""
|
49 |
+
for sentiment, score in sentiment_results.items():
|
50 |
+
emoji = get_sentiment_emoji(sentiment)
|
51 |
+
if option == "Sentiment Only":
|
52 |
+
sentiment_text += f"{sentiment} {emoji}\n"
|
53 |
+
elif option == "Sentiment + Score":
|
54 |
+
sentiment_text += f"{sentiment} {emoji}: {score}\n"
|
55 |
+
return sentiment_text
|
56 |
+
|
57 |
+
def inference(audio, sentiment_option):
|
58 |
+
audio = whisper.load_audio(audio)
|
59 |
+
audio = whisper.pad_or_trim(audio)
|
60 |
+
|
61 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
62 |
+
|
63 |
+
_, probs = model.detect_language(mel)
|
64 |
+
lang = max(probs, key=probs.get)
|
65 |
+
|
66 |
+
options = whisper.DecodingOptions(fp16=False)
|
67 |
+
result = whisper.decode(model, mel, options)
|
68 |
+
|
69 |
+
sentiment_results = analyze_sentiment(result.text)
|
70 |
+
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
|
71 |
+
|
72 |
+
return lang.upper(), result.text, sentiment_output
|
73 |
+
|
74 |
+
title = """<h1 align="center">๐ค Multilingual ASR ๐ฌ</h1>"""
|
75 |
+
image_path = "thmbnail.jpg"
|
76 |
+
description = """
|
77 |
+
๐ป This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br>
|
78 |
+
<br>
|
79 |
+
โ๏ธ Components of the tool:<br>
|
80 |
+
<br>
|
81 |
+
- Real-time multilingual speech recognition<br>
|
82 |
+
- Language identification<br>
|
83 |
+
- Sentiment analysis of the transcriptions<br>
|
84 |
+
<br>
|
85 |
+
๐ฏ The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br>
|
86 |
+
<br>
|
87 |
+
|
88 |
+
๐ The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br>
|
89 |
+
<br>
|
90 |
+
|
91 |
+
โ
The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br>
|
92 |
+
<br>
|
93 |
+
|
94 |
+
โ Use the microphone for real-time speech recognition.<br>
|
95 |
+
<br>
|
96 |
+
|
97 |
+
โก๏ธ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br>
|
98 |
+
|
99 |
+
"""
|
100 |
+
|
101 |
+
custom_css = """
|
102 |
+
#banner-image {
|
103 |
+
display: block;
|
104 |
+
margin-left: auto;
|
105 |
+
margin-right: auto;
|
106 |
+
}
|
107 |
+
#chat-message {
|
108 |
+
font-size: 14px;
|
109 |
+
min-height: 300px;
|
110 |
+
}
|
111 |
+
"""
|
112 |
+
|
113 |
+
block = gr.Blocks(css=custom_css)
|
114 |
+
|
115 |
+
with block:
|
116 |
+
gr.HTML(title)
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column():
|
120 |
+
gr.Image(image_path, elem_id="banner-image", show_label=False)
|
121 |
+
with gr.Column():
|
122 |
+
gr.HTML(description)
|
123 |
+
|
124 |
+
with gr.Group():
|
125 |
+
with gr.Box():
|
126 |
+
audio = gr.Audio(
|
127 |
+
label="Input Audio",
|
128 |
+
show_label=False,
|
129 |
+
source="microphone",
|
130 |
+
type="filepath"
|
131 |
+
)
|
132 |
+
|
133 |
+
sentiment_option = gr.Radio(
|
134 |
+
choices=["Sentiment Only", "Sentiment + Score"],
|
135 |
+
label="Select an option",
|
136 |
+
default="Sentiment Only"
|
137 |
+
)
|
138 |
+
|
139 |
+
btn = gr.Button("Transcribe")
|
140 |
+
|
141 |
+
lang_str = gr.Textbox(label="Language")
|
142 |
+
|
143 |
+
text = gr.Textbox(label="Transcription")
|
144 |
+
|
145 |
+
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True)
|
146 |
+
|
147 |
+
btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output])
|
148 |
+
|
149 |
+
gr.HTML('''
|
150 |
+
<div class="footer">
|
151 |
+
<p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a>
|
152 |
+
</p>
|
153 |
+
</div>
|
154 |
+
''')
|
155 |
+
|
156 |
+
block.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/openai/whisper.git
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
torch
|
5 |
+
torchaudio
|
6 |
+
torchvision
|
thmbnail.jpg
ADDED
Git LFS Details
|