from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification import torch import numpy as np labels = ['Not Acceptale', "Acceptable"] model_name = "abdulmatinomotoso/English_Grammar_Checker" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def get_emotion(sentence): input_tensor = tokenizer.encode(sentence, return_tensors="pt") logits = model(input_tensor).logits softmax = torch.nn.Softmax(dim=1) probs = softmax(logits)[0] probs = probs.cpu().detach().numpy() max_index = np.argmax(probs) result = labels[max_index] return result demo = gr.Interface(get_emotion, inputs=['text'], outputs="text", title = "English Grammar Checker") if __name__ == "__main__": demo.launch(debug=True)