File size: 7,816 Bytes
1ad4e76
 
 
54bac2e
02a9316
1ad4e76
 
 
54bac2e
8765030
 
 
54bac2e
8765030
1ad4e76
54bac2e
 
02a9316
 
 
54bac2e
 
 
 
 
 
02a9316
54bac2e
 
02a9316
8765030
 
 
02a9316
 
aae42e1
 
 
 
 
8765030
 
 
 
 
1ad4e76
 
8765030
 
 
 
 
1ad4e76
 
 
 
 
 
 
 
 
 
 
 
 
8765030
 
 
 
 
 
 
 
1ad4e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8765030
1ad4e76
8765030
02a9316
 
1ad4e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02a9316
 
54bac2e
02a9316
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from typing import List
from fastapi import FastAPI, HTTPException, Query, Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse, JSONResponse
import numpy as np
from pydantic import BaseModel, Field, conlist

from app.utils.embedding import get_embedding


app = FastAPI()


origins = [
    "http://localhost:3000",
    "http://localhost:8000",
    "localhost:8000",
    "https://your-space-name.hf.space",
]
app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Mount static files
app.mount(
    "/static", StaticFiles(directory="app/build/static", html=True), name="static"
)


# Serve index.html at the root
@app.get("/")
def read_root():
    return FileResponse("app/build/index.html")


words_db = []


@app.get("/api/words", tags=["words"])
async def get_words() -> dict:

    return {"data": words_db}


@app.post("/api/add-word", tags=["words"])
async def add_word(word: dict) -> dict:
    try:
        word_embedding = get_embedding(word["item"])
        words_db.append(word)
        word["embedding"] = word_embedding.tolist()

        return JSONResponse(
            status_code=200,
            content={"message": "Item created successfully", "success": True},
        )
    except HTTPException as e:
        raise e
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.delete("/api/delete-word/{word_id}", tags=["words"])
async def delete_word(word_id: str) -> dict:
    word_id = int(word_id)
    for word in words_db:
        if int(word["id"]) == word_id:
            words_db.remove(word)

            return {"data": {"Succesful"}}

    return {"data": {"Word not found"}}


#### Category Words

common_category_words = []


@app.get("/api/common-category-words", tags=["category-words"])
async def get_common_category_words() -> dict:

    return {"data": common_category_words}


@app.post("/api/add-common-category-words", tags=["category-words"])
async def add_common_category_words(new_word: dict) -> dict:
    try:
        for word in common_category_words:
            if new_word["item"] == word["item"]:
                raise HTTPException(status_code=400, detail="Word already exists")

        word_embedding = get_embedding(new_word["item"])
        new_word["embedding"] = word_embedding.tolist()
        common_category_words.append(new_word)
        return JSONResponse(
            status_code=200,
            content={"message": "Item created successfully", "success": True},
        )
    except HTTPException as e:
        raise e
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/api/get-embedding", tags=["category-words"])
async def get_embedding_api() -> dict:
    if len(common_category_words) > 1:
        vectors = [word["embedding"] for word in common_category_words]
        variances = np.var(vectors, axis=0)
        low_variance_dims = np.argsort(variances)[:3]
        result = {
            "variances": variances.tolist(),
            "top_variance_dims": low_variance_dims.tolist(),
        }
        return JSONResponse(status_code=200, content={"data": result, "success": True})
    return JSONResponse(
        status_code=200,
        content={
            "data": {"variances": [0] * 50, "top_variance_dims": [0, 1, 2]},
            "message": "Not enough words for analysis",
            "success": False,
        },
    )


@app.delete("/api/delete-common-category-words/{word_id}", tags=["category-words"])
async def delete_common_category_words(word_id: str) -> dict:
    word_id = int(word_id)
    for word in common_category_words:
        if int(word["id"]) == word_id:
            common_category_words.remove(word)

            return {"data": {"Succesful"}}

    return {"data": {"Word not found"}}


### Difference Semantic

from starlette.status import HTTP_422_UNPROCESSABLE_ENTITY


class WordPair(BaseModel):
    word1: str = Field(..., min_length=2)
    word2: str = Field(..., min_length=2)


@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
    errors = exc.errors()
    detailed_messages = [f"Error in {err['loc'][1]}: {err['msg']}" for err in errors]
    print(detailed_messages)
    return JSONResponse(
        status_code=HTTP_422_UNPROCESSABLE_ENTITY,
        content={"detail": ", ".join(detailed_messages), "body": exc.body},
    )


semantic_difference_db = {}


@app.get("/api/difference-semantic-words", tags=["difference-semantic"])
async def get_semantic_difference() -> dict:

    return JSONResponse(
        status_code=200, content={"data": semantic_difference_db, "success": True}
    )


@app.post("/api/add-difference-semantic-words", tags=["difference-semantic"])
async def add_semantic_difference(new_words: WordPair):
    try:
        first_word = new_words.word1
        second_word = new_words.word2

        combined_word = f"{first_word}-{second_word}"
        word_one_embedding = get_embedding(first_word)
        word_two_embedding = get_embedding(second_word)

        embedding = word_one_embedding - word_two_embedding

        if (
            combined_word in semantic_difference_db
            or combined_word[::-1] in semantic_difference_db
        ):
            raise HTTPException(
                status_code=400, detail="Semantic difference already exists"
            )
        semantic_difference_db[combined_word] = {
            "id": len(semantic_difference_db) + 1,
            "word-1": first_word,
            "word-2": second_word,
            "embedding": embedding.tolist(),
        }
        return JSONResponse(
            status_code=200,
            content={"message": "Item created successfully", "success": True},
        )
    except HTTPException as e:
        raise e
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/api/get-embedding-difference", tags=["difference-semantic"])
async def get_embedding_difference() -> dict:
    try:
        if len(semantic_difference_db) > 1:
            vectors = [word["embedding"] for word in semantic_difference_db.values()]
            variances = np.var(vectors, axis=0)
            low_variance_dims = np.argsort(variances)[:3]
            result = {
                "variance": variances.tolist(),
                "top_variance_dims": low_variance_dims.tolist(),
            }
            return JSONResponse(
                status_code=200, content={"data": result, "success": True}
            )
        return JSONResponse(
            status_code=200,
            content={
                "data": {"variance": [0] * 50, "top_variance_dims": [0, 1, 2]},
                "message": "Not enough words for analysis",
                "success": False,
            },
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.delete(
    "/api/delete-difference-semantic-words/{word_id}", tags=["difference-semantic"]
)
async def delete_semantic_difference(word_id: str) -> dict:
    try:
        word_id = int(word_id)
        for word in semantic_difference_db.values():
            if int(word["id"]) == word_id:
                del semantic_difference_db[word["word-1"] + "-" + word["word-2"]]
                return {"data": {"Succesful"}}
        return JSONResponse(status_code=404, content={"data": {"Word not found"}})
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8000)