Spaces:
Running
Running
from typing import List | |
import uuid | |
from qdrant_client.models import PointStruct | |
from app.infrastructure.models.my_models import EmbeddingCreation | |
from app.infrastructure.repository.document_handeler_repository import ( | |
DocumentHandelerRepository, | |
) | |
from app.modules.denseEmbeddings.denseEmbeddings import DenseEmbeddings | |
class CreateEmbeddingsFeature: | |
def __init__( | |
self, | |
dense_embeddings: DenseEmbeddings, | |
document_handeler_repository: DocumentHandelerRepository, | |
): | |
self.dense_embeddings = dense_embeddings | |
self.document_handeler_repository = document_handeler_repository | |
def chunk_text(self, text: str, chunk_size: int = 512) -> List[str]: | |
""" | |
Chunk text into smaller pieces | |
:param text: str | |
:param chunk_size: int | |
:return: List[str] | |
""" | |
chunks = [text[i : i + chunk_size] for i in range(0, len(text), chunk_size)] | |
return chunks | |
async def create_embeddings(self, text: str, filename: str) -> EmbeddingCreation: | |
""" | |
Create embeddings for the text | |
:param text: str | |
:param filename: str | |
:return: EmbeddingCreation | |
""" | |
chunks = self.chunk_text(text) | |
document_id = filename.split(".")[0] | |
points = [ | |
PointStruct( | |
id=str(uuid.uuid4()), | |
vector={ | |
"text-dense": self.dense_embeddings.get_dense_vector(chunk).vector, | |
"text-sparse": self.dense_embeddings.get_sparse_vector(chunk), | |
}, | |
payload={ | |
"document_id": document_id, | |
"chunk_index": i, | |
"filename": filename, | |
"chunk-text": chunk, | |
}, | |
) | |
for i, chunk in enumerate(chunks) | |
] | |
result = self.document_handeler_repository.insert_points(points) | |
if result.status: | |
return EmbeddingCreation( | |
success=True, message="Embeddings created successfully" | |
) | |
return EmbeddingCreation(success=False, message="Embeddings creation failed") | |