DocuRAG / Api /app /modules /querySearch /features /querySearch_feature_v2.py
abadesalex's picture
Update to Qdrant db
47b5f0c
raw
history blame
2.69 kB
import json
from typing import List, Tuple
import numpy as np
# from fastapi.responses import JSONResponse
# from sentence_transformers import SentenceTransformer
# from transformers import pipeline
from app.db_local_storage.in_memory_db import query_response_storage
class QuerySearchFeature:
def __init__(self, model, qa_pipeline):
self.model = model
self.qa_pipeline = qa_pipeline
async def query_search(self, query: str) -> dict:
user_query = {
"text": query,
"isSender": True,
}
query_response_storage.append(user_query)
# dataBase = await QuerySearchFeature.load_data()
dataBase = vector_files_db
text_data, embeddings = await QuerySearchFeature.split_dataBase(dataBase)
lexical_results = await QuerySearchFeature.lexical_search(query, text_data)
semantic_results = await QuerySearchFeature.semantic_search(
query, text_data, embeddings, self.model
)
combined_results = list(set(lexical_results + semantic_results))
context = await QuerySearchFeature.get_context(combined_results)
response = self.qa_pipeline(question=query, context=context)
response_query = {
"text": response["answer"],
"isSender": False,
}
query_response_storage.append(response_query)
return {
"message": response["answer"],
"context_used": context,
"chunks": context,
}
@staticmethod
async def semantic_search(
query: str, chunks: List[str], embeddings: np.ndarray, model
) -> List[str]:
query_embedding = model.encode([query])
similarities = np.dot(embeddings, query_embedding.T).flatten()
top_indices = np.argsort(-similarities)[:3]
return [chunks[i] for i in top_indices]
@staticmethod
async def lexical_search(query: str, chunks: List[str]) -> List[str]:
return [chunk for chunk in chunks if query.lower() in chunk.lower()]
@staticmethod
async def load_data():
with open(VECTOR_FILES_DIRECTORY, "r") as file:
dataBase = json.load(file)
return dataBase
@staticmethod
async def split_dataBase(db) -> Tuple[List[str], np.ndarray]:
text_data = []
embeddings = []
for document in db.values():
for page in document["data"]:
text_data.append(page["metadata"]["original_text"])
embeddings.append(page["embedding"])
return text_data, embeddings
@staticmethod
async def get_context(chunks: List[str]) -> str:
return " ".join(chunks)