Spaces:
Runtime error
Runtime error
import os | |
import platform | |
from functools import partial | |
import torch | |
from fast_sam import FastSamAutomaticMaskGenerator, fast_sam_model_registry | |
from ia_check_versions import ia_check_versions | |
from ia_config import IAConfig | |
from ia_devices import devices | |
from ia_logging import ia_logging | |
from mobile_sam import SamAutomaticMaskGenerator as SamAutomaticMaskGeneratorMobile | |
from mobile_sam import SamPredictor as SamPredictorMobile | |
from mobile_sam import sam_model_registry as sam_model_registry_mobile | |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator | |
from sam2.build_sam import build_sam2 | |
from segment_anything_fb import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry | |
from segment_anything_hq import SamAutomaticMaskGenerator as SamAutomaticMaskGeneratorHQ | |
from segment_anything_hq import SamPredictor as SamPredictorHQ | |
from segment_anything_hq import sam_model_registry as sam_model_registry_hq | |
def check_bfloat16_support() -> bool: | |
if torch.cuda.is_available(): | |
compute_capability = torch.cuda.get_device_capability(torch.cuda.current_device()) | |
if compute_capability[0] >= 8: | |
ia_logging.debug("The CUDA device supports bfloat16") | |
return True | |
else: | |
ia_logging.debug("The CUDA device does not support bfloat16") | |
return False | |
else: | |
ia_logging.debug("CUDA is not available") | |
return False | |
def partial_from_end(func, /, *fixed_args, **fixed_kwargs): | |
def wrapper(*args, **kwargs): | |
updated_kwargs = {**fixed_kwargs, **kwargs} | |
return func(*args, *fixed_args, **updated_kwargs) | |
return wrapper | |
def rename_args(func, arg_map): | |
def wrapper(*args, **kwargs): | |
new_kwargs = {arg_map.get(k, k): v for k, v in kwargs.items()} | |
return func(*args, **new_kwargs) | |
return wrapper | |
arg_map = {"checkpoint": "ckpt_path"} | |
rename_build_sam2 = rename_args(build_sam2, arg_map) | |
end_kwargs = dict(device="cpu", mode="eval", hydra_overrides_extra=[], apply_postprocessing=False) | |
sam2_model_registry = { | |
"sam2_hiera_large": partial(partial_from_end(rename_build_sam2, **end_kwargs), "sam2_hiera_l.yaml"), | |
"sam2_hiera_base_plus": partial(partial_from_end(rename_build_sam2, **end_kwargs), "sam2_hiera_b+.yaml"), | |
"sam2_hiera_small": partial(partial_from_end(rename_build_sam2, **end_kwargs), "sam2_hiera_s.yaml"), | |
"sam2_hiera_tiny": partial(partial_from_end(rename_build_sam2, **end_kwargs), "sam2_hiera_t.yaml"), | |
} | |
def get_sam_mask_generator(sam_checkpoint, anime_style_chk=False): | |
"""Get SAM mask generator. | |
Args: | |
sam_checkpoint (str): SAM checkpoint path | |
Returns: | |
SamAutomaticMaskGenerator or None: SAM mask generator | |
""" | |
points_per_batch = 64 | |
if "_hq_" in os.path.basename(sam_checkpoint): | |
model_type = os.path.basename(sam_checkpoint)[7:12] | |
sam_model_registry_local = sam_model_registry_hq | |
SamAutomaticMaskGeneratorLocal = SamAutomaticMaskGeneratorHQ | |
points_per_batch = 32 | |
elif "FastSAM" in os.path.basename(sam_checkpoint): | |
model_type = os.path.splitext(os.path.basename(sam_checkpoint))[0] | |
sam_model_registry_local = fast_sam_model_registry | |
SamAutomaticMaskGeneratorLocal = FastSamAutomaticMaskGenerator | |
points_per_batch = None | |
elif "mobile_sam" in os.path.basename(sam_checkpoint): | |
model_type = "vit_t" | |
sam_model_registry_local = sam_model_registry_mobile | |
SamAutomaticMaskGeneratorLocal = SamAutomaticMaskGeneratorMobile | |
points_per_batch = 64 | |
elif "sam2_" in os.path.basename(sam_checkpoint): | |
model_type = os.path.splitext(os.path.basename(sam_checkpoint))[0] | |
sam_model_registry_local = sam2_model_registry | |
SamAutomaticMaskGeneratorLocal = SAM2AutomaticMaskGenerator | |
points_per_batch = 128 | |
else: | |
model_type = os.path.basename(sam_checkpoint)[4:9] | |
sam_model_registry_local = sam_model_registry | |
SamAutomaticMaskGeneratorLocal = SamAutomaticMaskGenerator | |
points_per_batch = 64 | |
pred_iou_thresh = 0.88 if not anime_style_chk else 0.83 | |
stability_score_thresh = 0.95 if not anime_style_chk else 0.9 | |
if "sam2_" in model_type: | |
pred_iou_thresh = round(pred_iou_thresh - 0.18, 2) | |
stability_score_thresh = round(stability_score_thresh - 0.03, 2) | |
sam2_gen_kwargs = dict( | |
points_per_side=64, | |
points_per_batch=points_per_batch, | |
pred_iou_thresh=pred_iou_thresh, | |
stability_score_thresh=stability_score_thresh, | |
stability_score_offset=0.7, | |
crop_n_layers=1, | |
box_nms_thresh=0.7, | |
crop_n_points_downscale_factor=2) | |
if platform.system() == "Darwin": | |
sam2_gen_kwargs.update(dict(points_per_side=32, points_per_batch=64, crop_n_points_downscale_factor=1)) | |
if os.path.isfile(sam_checkpoint): | |
sam = sam_model_registry_local[model_type](checkpoint=sam_checkpoint) | |
if platform.system() == "Darwin": | |
if "FastSAM" in os.path.basename(sam_checkpoint) or not ia_check_versions.torch_mps_is_available: | |
sam.to(device=torch.device("cpu")) | |
else: | |
sam.to(device=torch.device("mps")) | |
else: | |
if IAConfig.global_args.get("sam_cpu", False): | |
ia_logging.info("SAM is running on CPU... (the option has been selected)") | |
sam.to(device=devices.cpu) | |
else: | |
sam.to(device=devices.device) | |
sam_gen_kwargs = dict( | |
model=sam, points_per_batch=points_per_batch, pred_iou_thresh=pred_iou_thresh, stability_score_thresh=stability_score_thresh) | |
if "sam2_" in model_type: | |
sam_gen_kwargs.update(sam2_gen_kwargs) | |
sam_mask_generator = SamAutomaticMaskGeneratorLocal(**sam_gen_kwargs) | |
else: | |
sam_mask_generator = None | |
return sam_mask_generator | |
def get_sam_predictor(sam_checkpoint): | |
"""Get SAM predictor. | |
Args: | |
sam_checkpoint (str): SAM checkpoint path | |
Returns: | |
SamPredictor or None: SAM predictor | |
""" | |
# model_type = "vit_h" | |
if "_hq_" in os.path.basename(sam_checkpoint): | |
model_type = os.path.basename(sam_checkpoint)[7:12] | |
sam_model_registry_local = sam_model_registry_hq | |
SamPredictorLocal = SamPredictorHQ | |
elif "FastSAM" in os.path.basename(sam_checkpoint): | |
raise NotImplementedError("FastSAM predictor is not implemented yet.") | |
elif "mobile_sam" in os.path.basename(sam_checkpoint): | |
model_type = "vit_t" | |
sam_model_registry_local = sam_model_registry_mobile | |
SamPredictorLocal = SamPredictorMobile | |
else: | |
model_type = os.path.basename(sam_checkpoint)[4:9] | |
sam_model_registry_local = sam_model_registry | |
SamPredictorLocal = SamPredictor | |
if os.path.isfile(sam_checkpoint): | |
sam = sam_model_registry_local[model_type](checkpoint=sam_checkpoint) | |
if platform.system() == "Darwin": | |
if "FastSAM" in os.path.basename(sam_checkpoint) or not ia_check_versions.torch_mps_is_available: | |
sam.to(device=torch.device("cpu")) | |
else: | |
sam.to(device=torch.device("mps")) | |
else: | |
if IAConfig.global_args.get("sam_cpu", False): | |
ia_logging.info("SAM is running on CPU... (the option has been selected)") | |
sam.to(device=devices.cpu) | |
else: | |
sam.to(device=devices.device) | |
sam_predictor = SamPredictorLocal(sam) | |
else: | |
sam_predictor = None | |
return sam_predictor | |