ZackBradshaw DHEIVER commited on
Commit
aaf6ffd
0 Parent(s):

Duplicate from DHEIVER/timeseries-anomaly-detection-autoencoders

Browse files

Co-authored-by: Dheiver Santos <[email protected]>

Files changed (8) hide show
  1. .gitattributes +27 -0
  2. README.md +13 -0
  3. app.py +85 -0
  4. art_daily_jumpsup.csv +0 -0
  5. example_1.csv +44 -0
  6. example_2.csv +43 -0
  7. requirements.txt +5 -0
  8. scaler.json +1 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.onnx filter=lfs diff=lfs merge=lfs -text
13
+ *.ot filter=lfs diff=lfs merge=lfs -text
14
+ *.parquet filter=lfs diff=lfs merge=lfs -text
15
+ *.pb filter=lfs diff=lfs merge=lfs -text
16
+ *.pt filter=lfs diff=lfs merge=lfs -text
17
+ *.pth filter=lfs diff=lfs merge=lfs -text
18
+ *.rar filter=lfs diff=lfs merge=lfs -text
19
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
21
+ *.tflite filter=lfs diff=lfs merge=lfs -text
22
+ *.tgz filter=lfs diff=lfs merge=lfs -text
23
+ *.wasm filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Timeseries Anomaly Detection
3
+ emoji: 🌍
4
+ colorFrom: blue
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 3.0.1
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: DHEIVER/timeseries-anomaly-detection-autoencoders
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import from_pretrained_keras
3
+ import pandas as pd
4
+ import numpy as np
5
+ import json
6
+ from matplotlib import pyplot as plt
7
+
8
+ f = open('scaler.json')
9
+ scaler = json.load(f)
10
+
11
+ TIME_STEPS = 288
12
+
13
+ # Generated training sequences for use in the model.
14
+ def create_sequences(values, time_steps=TIME_STEPS):
15
+ output = []
16
+ for i in range(len(values) - time_steps + 1):
17
+ output.append(values[i : (i + time_steps)])
18
+ return np.stack(output)
19
+
20
+
21
+ def normalize_data(data):
22
+ df_test_value = (data - scaler["mean"]) / scaler["std"]
23
+ return df_test_value
24
+
25
+ def plot_test_data(df_test_value):
26
+ fig, ax = plt.subplots(figsize=(12, 6))
27
+ df_test_value.plot(legend=False, ax=ax)
28
+ ax.set_xlabel("Time")
29
+ ax.set_ylabel("Value")
30
+ ax.set_title("Input Test Data")
31
+ return fig
32
+
33
+ def get_anomalies(df_test_value):
34
+ # Create sequences from test values.
35
+ x_test = create_sequences(df_test_value.values)
36
+ model = from_pretrained_keras("keras-io/timeseries-anomaly-detection")
37
+
38
+ # Get test MAE loss.
39
+ x_test_pred = model.predict(x_test)
40
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
41
+ test_mae_loss = test_mae_loss.reshape((-1))
42
+
43
+ # Detect all the samples which are anomalies.
44
+ anomalies = test_mae_loss > scaler["threshold"]
45
+ return anomalies
46
+
47
+ def plot_anomalies(df_test_value, data, anomalies):
48
+ # data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
49
+ anomalous_data_indices = []
50
+ for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1):
51
+ if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]):
52
+ anomalous_data_indices.append(data_idx)
53
+ df_subset = data.iloc[anomalous_data_indices]
54
+ fig, ax = plt.subplots(figsize=(12, 6))
55
+ data.plot(legend=False, ax=ax)
56
+ df_subset.plot(legend=False, ax=ax, color="r")
57
+ ax.set_xlabel("Time")
58
+ ax.set_ylabel("Value")
59
+ ax.set_title("Anomalous Data Points")
60
+ return fig
61
+
62
+ def master(file):
63
+ # read file
64
+ data = pd.read_csv(file, parse_dates=True, index_col="timestamp")
65
+ df_test_value = normalize_data(data)
66
+ # plot input test data
67
+ plot1 = plot_test_data(df_test_value)
68
+ # predict
69
+ anomalies = get_anomalies(df_test_value)
70
+ #plot anomalous data points
71
+ plot2 = plot_anomalies(df_test_value, data, anomalies)
72
+ return plot2
73
+
74
+ outputs = gr.outputs.Image()
75
+
76
+ iface = gr.Interface(
77
+ fn=master,
78
+ inputs=gr.inputs.File(label="CSV File"),
79
+ outputs=outputs,
80
+ examples=["art_daily_jumpsup.csv"],
81
+ title="Timeseries Anomaly Detection Using an Autoencoder",
82
+ description="Anomaly detection of timeseries data."
83
+ )
84
+
85
+ iface.launch()
art_daily_jumpsup.csv ADDED
The diff for this file is too large to render. See raw diff
 
example_1.csv ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ timestamp,value
2
+ 2023-07-01 09:00:00,0.256
3
+ 2023-07-01 09:01:00,0.342
4
+ 2023-07-01 09:02:00,0.421
5
+ 2023-07-01 09:03:00,0.189
6
+ 2023-07-01 09:04:00,0.289
7
+ 2023-07-01 09:05:00,0.512
8
+ 2023-07-01 09:06:00,0.367
9
+ 2023-07-01 09:07:00,0.428
10
+ 2023-07-01 09:08:00,0.196
11
+ 2023-07-01 09:09:00,0.317
12
+ 2023-07-01 09:10:00,0.425
13
+ 2023-07-01 09:11:00,0.274
14
+ 2023-07-01 09:12:00,0.312
15
+ 2023-07-01 09:13:00,0.397
16
+ 2023-07-01 09:14:00,0.251
17
+ 2023-07-01 09:15:00,0.361
18
+ 2023-07-01 09:16:00,0.429
19
+ 2023-07-01 09:17:00,0.185
20
+ 2023-07-01 09:18:00,0.327
21
+ 2023-07-01 09:19:00,0.412
22
+ 2023-07-01 09:20:00,0.197
23
+ 2023-07-01 09:21:00,0.303
24
+ 2023-07-01 09:22:00,0.439
25
+ 2023-07-01 09:23:00,0.254
26
+ 2023-07-01 09:24:00,0.367
27
+ 2023-07-01 09:25:00,0.421
28
+ 2023-07-01 09:26:00,0.193
29
+ 2023-07-01 09:27:00,0.297
30
+ 2023-07-01 09:28:00,0.416
31
+ 2023-07-01 09:29:00,0.224
32
+ 2023-07-01 09:30:00,0.359
33
+ 2023-07-01 09:31:00,0.428
34
+ 2023-07-01 09:32:00,0.165
35
+ 2023-07-01 09:33:00,0.338
36
+ 2023-07-01 09:34:00,0.405
37
+ 2023-07-01 09:35:00,0.217
38
+ 2023-07-01 09:36:00,0.292
39
+ 2023-07-01 09:37:00,0.434
40
+ 2023-07-01 09:38:00,0.235
41
+ 2023-07-01 09:39:00,0.341
42
+ 2023-07-01 09:40:00,0.398
43
+ 2023-07-01 09:41:00,0.203
44
+ 2023-07-01 09:42:00,0.282
example_2.csv ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ timestamp,value
2
+ 2023-07-01 08:00:00,10.2
3
+ 2023-07-01 08:01:00,10.5
4
+ 2023-07-01 08:02:00,11.1
5
+ 2023-07-01 08:03:00,9.8
6
+ 2023-07-01 08:04:00,11.5
7
+ 2023-07-01 08:05:00,10.9
8
+ 2023-07-01 08:06:00,10.7
9
+ 2023-07-01 08:07:00,11.2
10
+ 2023-07-01 08:08:00,10.4
11
+ 2023-07-01 08:09:00,10.6
12
+ 2023-07-01 08:10:00,11.3
13
+ 2023-07-01 08:11:00,10.8
14
+ 2023-07-01 08:12:00,10.5
15
+ 2023-07-01 08:13:00,10.2
16
+ 2023-07-01 08:14:00,11.1
17
+ 2023-07-01 08:15:00,10.3
18
+ 2023-07-01 08:16:00,10.6
19
+ 2023-07-01 08:17:00,11.0
20
+ 2023-07-01 08:18:00,10.8
21
+ 2023-07-01 08:19:00,10.4
22
+ 2023-07-01 08:20:00,11.2
23
+ 2023-07-01 08:21:00,10.7
24
+ 2023-07-01 08:22:00,10.5
25
+ 2023-07-01 08:23:00,10.9
26
+ 2023-07-01 08:24:00,10.2
27
+ 2023-07-01 08:25:00,10.8
28
+ 2023-07-01 08:26:00,11.3
29
+ 2023-07-01 08:27:00,10.6
30
+ 2023-07-01 08:28:00,10.3
31
+ 2023-07-01 08:29:00,11.1
32
+ 2023-07-01 08:30:00,10.7
33
+ 2023-07-01 08:31:00,10.9
34
+ 2023-07-01 08:32:00,11.2
35
+ 2023-07-01 08:33:00,10.4
36
+ 2023-07-01 08:34:00,10.2
37
+ 2023-07-01 08:35:00,10.6
38
+ 2023-07-01 08:36:00,11.0
39
+ 2023-07-01 08:37:00,10.5
40
+ 2023-07-01 08:38:00,10.8
41
+ 2023-07-01 08:39:00,11.1
42
+ 2023-07-01 08:40:00,10.3
43
+ 2023-07-01 08:41:00,10.7
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio
2
+ pandas
3
+ numpy
4
+ matplotlib
5
+ tensorflow
scaler.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean": 42.43835333580657, "std": 28.07712228126252, "threshold": 0.1001741920131276}