# Copyright (c) 2019 Shigeki Karita # 2020 Mobvoi Inc (Binbin Zhang) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Positionwise feed forward layer definition.""" import torch class PositionwiseFeedForward(torch.nn.Module): """Positionwise feed forward layer. FeedForward are appied on each position of the sequence. The output dim is same with the input dim. Args: idim (int): Input dimenstion. hidden_units (int): The number of hidden units. dropout_rate (float): Dropout rate. activation (torch.nn.Module): Activation function """ def __init__( self, idim: int, hidden_units: int, dropout_rate: float, activation: torch.nn.Module = torch.nn.ReLU(), ): """Construct a PositionwiseFeedForward object.""" super(PositionwiseFeedForward, self).__init__() self.w_1 = torch.nn.Linear(idim, hidden_units) self.activation = activation self.dropout = torch.nn.Dropout(dropout_rate) self.w_2 = torch.nn.Linear(hidden_units, idim) def forward(self, xs: torch.Tensor) -> torch.Tensor: """Forward function. Args: xs: input tensor (B, L, D) Returns: output tensor, (B, L, D) """ return self.w_2(self.dropout(self.activation(self.w_1(xs)))) class MoEFFNLayer(torch.nn.Module): """ Mixture of expert with Positionwise feed forward layer See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf The output dim is same with the input dim. Modified from https://github.com/Lightning-AI/lit-gpt/pull/823 https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219 Args: n_expert: number of expert. n_expert_per_token: The actual number of experts used for each frame idim (int): Input dimenstion. hidden_units (int): The number of hidden units. dropout_rate (float): Dropout rate. activation (torch.nn.Module): Activation function """ def __init__( self, n_expert: int, n_expert_per_token: int, idim: int, hidden_units: int, dropout_rate: float, activation: torch.nn.Module = torch.nn.ReLU(), ): super(MoEFFNLayer, self).__init__() self.gate = torch.nn.Linear(idim, n_expert, bias=False) self.experts = torch.nn.ModuleList( PositionwiseFeedForward(idim, hidden_units, dropout_rate, activation) for _ in range(n_expert)) self.n_expert_per_token = n_expert_per_token def forward(self, xs: torch.Tensor) -> torch.Tensor: """Foward function. Args: xs: input tensor (B, L, D) Returns: output tensor, (B, L, D) """ B, L, D = xs.size( ) # batch size, sequence length, embedding dimension (idim) xs = xs.view(-1, D) # (B*L, D) router = self.gate(xs) # (B*L, n_expert) logits, indices = torch.topk( router, self.n_expert_per_token ) # probs:(B*L, n_expert), indices: (B*L, n_expert) weights = torch.nn.functional.softmax( logits, dim=1, dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token) output = torch.zeros_like(xs) # (B*L, D) for i, expert in enumerate(self.experts): mask = indices == i batch_idx, ith_expert = torch.where(mask) output[batch_idx] += weights[batch_idx, ith_expert, None] * expert( xs[batch_idx]) return output.view(B, L, D)