# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu) # 2024 Alibaba Inc (Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from ESPnet(https://github.com/espnet/espnet) """Decoder definition.""" from typing import Tuple, List, Optional import torch import torch.utils.checkpoint as ckpt import logging from cosyvoice.transformer.decoder_layer import DecoderLayer from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward from cosyvoice.utils.class_utils import ( COSYVOICE_EMB_CLASSES, COSYVOICE_ATTENTION_CLASSES, COSYVOICE_ACTIVATION_CLASSES, ) from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask) class TransformerDecoder(torch.nn.Module): """Base class of Transfomer decoder module. Args: vocab_size: output dim encoder_output_size: dimension of attention attention_heads: the number of heads of multi head attention linear_units: the hidden units number of position-wise feedforward num_blocks: the number of decoder blocks dropout_rate: dropout rate self_attention_dropout_rate: dropout rate for attention input_layer: input layer type use_output_layer: whether to use output layer pos_enc_class: PositionalEncoding or ScaledPositionalEncoding normalize_before: True: use layer_norm before each sub-block of a layer. False: use layer_norm after each sub-block of a layer. src_attention: if false, encoder-decoder cross attention is not applied, such as CIF model key_bias: whether use bias in attention.linear_k, False for whisper models. gradient_checkpointing: rerunning a forward-pass segment for each checkpointed segment during backward. tie_word_embedding: Tie or clone module weights depending of whether we are using TorchScript or not """ def __init__( self, vocab_size: int, encoder_output_size: int, attention_heads: int = 4, linear_units: int = 2048, num_blocks: int = 6, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, self_attention_dropout_rate: float = 0.0, src_attention_dropout_rate: float = 0.0, input_layer: str = "embed", use_output_layer: bool = True, normalize_before: bool = True, src_attention: bool = True, key_bias: bool = True, activation_type: str = "relu", gradient_checkpointing: bool = False, tie_word_embedding: bool = False, ): super().__init__() attention_dim = encoder_output_size activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]() self.embed = torch.nn.Sequential( torch.nn.Identity() if input_layer == "no_pos" else torch.nn.Embedding(vocab_size, attention_dim), COSYVOICE_EMB_CLASSES[input_layer](attention_dim, positional_dropout_rate), ) self.normalize_before = normalize_before self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5) self.use_output_layer = use_output_layer if use_output_layer: self.output_layer = torch.nn.Linear(attention_dim, vocab_size) else: self.output_layer = torch.nn.Identity() self.num_blocks = num_blocks self.decoders = torch.nn.ModuleList([ DecoderLayer( attention_dim, COSYVOICE_ATTENTION_CLASSES["selfattn"]( attention_heads, attention_dim, self_attention_dropout_rate, key_bias), COSYVOICE_ATTENTION_CLASSES["selfattn"]( attention_heads, attention_dim, src_attention_dropout_rate, key_bias) if src_attention else None, PositionwiseFeedForward(attention_dim, linear_units, dropout_rate, activation), dropout_rate, normalize_before, ) for _ in range(self.num_blocks) ]) self.gradient_checkpointing = gradient_checkpointing self.tie_word_embedding = tie_word_embedding def forward( self, memory: torch.Tensor, memory_mask: torch.Tensor, ys_in_pad: torch.Tensor, ys_in_lens: torch.Tensor, r_ys_in_pad: torch.Tensor = torch.empty(0), reverse_weight: float = 0.0, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Forward decoder. Args: memory: encoded memory, float32 (batch, maxlen_in, feat) memory_mask: encoder memory mask, (batch, 1, maxlen_in) ys_in_pad: padded input token ids, int64 (batch, maxlen_out) ys_in_lens: input lengths of this batch (batch) r_ys_in_pad: not used in transformer decoder, in order to unify api with bidirectional decoder reverse_weight: not used in transformer decoder, in order to unify api with bidirectional decode Returns: (tuple): tuple containing: x: decoded token score before softmax (batch, maxlen_out, vocab_size) if use_output_layer is True, torch.tensor(0.0), in order to unify api with bidirectional decoder olens: (batch, ) NOTE(xcsong): We pass the `__call__` method of the modules instead of `forward` to the checkpointing API because `__call__` attaches all the hooks of the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 """ tgt = ys_in_pad maxlen = tgt.size(1) # tgt_mask: (B, 1, L) tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1) tgt_mask = tgt_mask.to(tgt.device) # m: (1, L, L) m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0) # tgt_mask: (B, L, L) tgt_mask = tgt_mask & m x, _ = self.embed(tgt) if self.gradient_checkpointing and self.training: x = self.forward_layers_checkpointed(x, tgt_mask, memory, memory_mask) else: x = self.forward_layers(x, tgt_mask, memory, memory_mask) if self.normalize_before: x = self.after_norm(x) if self.use_output_layer: x = self.output_layer(x) olens = tgt_mask.sum(1) return x, torch.tensor(0.0), olens def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor, memory: torch.Tensor, memory_mask: torch.Tensor) -> torch.Tensor: for layer in self.decoders: x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory, memory_mask) return x @torch.jit.ignore(drop=True) def forward_layers_checkpointed(self, x: torch.Tensor, tgt_mask: torch.Tensor, memory: torch.Tensor, memory_mask: torch.Tensor) -> torch.Tensor: for layer in self.decoders: x, tgt_mask, memory, memory_mask = ckpt.checkpoint( layer.__call__, x, tgt_mask, memory, memory_mask) return x def forward_one_step( self, memory: torch.Tensor, memory_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor, cache: Optional[List[torch.Tensor]] = None, ) -> Tuple[torch.Tensor, List[torch.Tensor]]: """Forward one step. This is only used for decoding. Args: memory: encoded memory, float32 (batch, maxlen_in, feat) memory_mask: encoded memory mask, (batch, 1, maxlen_in) tgt: input token ids, int64 (batch, maxlen_out) tgt_mask: input token mask, (batch, maxlen_out) dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (include 1.2) cache: cached output list of (batch, max_time_out-1, size) Returns: y, cache: NN output value and cache per `self.decoders`. y.shape` is (batch, maxlen_out, token) """ x, _ = self.embed(tgt) new_cache = [] for i, decoder in enumerate(self.decoders): if cache is None: c = None else: c = cache[i] x, tgt_mask, memory, memory_mask = decoder(x, tgt_mask, memory, memory_mask, cache=c) new_cache.append(x) if self.normalize_before: y = self.after_norm(x[:, -1]) else: y = x[:, -1] if self.use_output_layer: y = torch.log_softmax(self.output_layer(y), dim=-1) return y, new_cache def tie_or_clone_weights(self, jit_mode: bool = True): """Tie or clone module weights (between word_emb and output_layer) depending of whether we are using TorchScript or not""" if not self.use_output_layer: return if jit_mode: logging.info("clone emb.weight to output.weight") self.output_layer.weight = torch.nn.Parameter( self.embed[0].weight.clone()) else: logging.info("tie emb.weight with output.weight") self.output_layer.weight = self.embed[0].weight if getattr(self.output_layer, "bias", None) is not None: self.output_layer.bias.data = torch.nn.functional.pad( self.output_layer.bias.data, ( 0, self.output_layer.weight.shape[0] - self.output_layer.bias.shape[0], ), "constant", 0, ) class BiTransformerDecoder(torch.nn.Module): """Base class of Transfomer decoder module. Args: vocab_size: output dim encoder_output_size: dimension of attention attention_heads: the number of heads of multi head attention linear_units: the hidden units number of position-wise feedforward num_blocks: the number of decoder blocks r_num_blocks: the number of right to left decoder blocks dropout_rate: dropout rate self_attention_dropout_rate: dropout rate for attention input_layer: input layer type use_output_layer: whether to use output layer pos_enc_class: PositionalEncoding or ScaledPositionalEncoding normalize_before: True: use layer_norm before each sub-block of a layer. False: use layer_norm after each sub-block of a layer. key_bias: whether use bias in attention.linear_k, False for whisper models. """ def __init__( self, vocab_size: int, encoder_output_size: int, attention_heads: int = 4, linear_units: int = 2048, num_blocks: int = 6, r_num_blocks: int = 0, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, self_attention_dropout_rate: float = 0.0, src_attention_dropout_rate: float = 0.0, input_layer: str = "embed", use_output_layer: bool = True, normalize_before: bool = True, key_bias: bool = True, gradient_checkpointing: bool = False, tie_word_embedding: bool = False, ): super().__init__() self.tie_word_embedding = tie_word_embedding self.left_decoder = TransformerDecoder( vocab_size, encoder_output_size, attention_heads, linear_units, num_blocks, dropout_rate, positional_dropout_rate, self_attention_dropout_rate, src_attention_dropout_rate, input_layer, use_output_layer, normalize_before, key_bias=key_bias, gradient_checkpointing=gradient_checkpointing, tie_word_embedding=tie_word_embedding) self.right_decoder = TransformerDecoder( vocab_size, encoder_output_size, attention_heads, linear_units, r_num_blocks, dropout_rate, positional_dropout_rate, self_attention_dropout_rate, src_attention_dropout_rate, input_layer, use_output_layer, normalize_before, key_bias=key_bias, gradient_checkpointing=gradient_checkpointing, tie_word_embedding=tie_word_embedding) def forward( self, memory: torch.Tensor, memory_mask: torch.Tensor, ys_in_pad: torch.Tensor, ys_in_lens: torch.Tensor, r_ys_in_pad: torch.Tensor, reverse_weight: float = 0.0, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Forward decoder. Args: memory: encoded memory, float32 (batch, maxlen_in, feat) memory_mask: encoder memory mask, (batch, 1, maxlen_in) ys_in_pad: padded input token ids, int64 (batch, maxlen_out) ys_in_lens: input lengths of this batch (batch) r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out), used for right to left decoder reverse_weight: used for right to left decoder Returns: (tuple): tuple containing: x: decoded token score before softmax (batch, maxlen_out, vocab_size) if use_output_layer is True, r_x: x: decoded token score (right to left decoder) before softmax (batch, maxlen_out, vocab_size) if use_output_layer is True, olens: (batch, ) """ l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad, ys_in_lens) r_x = torch.tensor(0.0) if reverse_weight > 0.0: r_x, _, olens = self.right_decoder(memory, memory_mask, r_ys_in_pad, ys_in_lens) return l_x, r_x, olens def forward_one_step( self, memory: torch.Tensor, memory_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor, cache: Optional[List[torch.Tensor]] = None, ) -> Tuple[torch.Tensor, List[torch.Tensor]]: """Forward one step. This is only used for decoding. Args: memory: encoded memory, float32 (batch, maxlen_in, feat) memory_mask: encoded memory mask, (batch, 1, maxlen_in) tgt: input token ids, int64 (batch, maxlen_out) tgt_mask: input token mask, (batch, maxlen_out) dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (include 1.2) cache: cached output list of (batch, max_time_out-1, size) Returns: y, cache: NN output value and cache per `self.decoders`. y.shape` is (batch, maxlen_out, token) """ return self.left_decoder.forward_one_step(memory, memory_mask, tgt, tgt_mask, cache) def tie_or_clone_weights(self, jit_mode: bool = True): """Tie or clone module weights (between word_emb and output_layer) depending of whether we are using TorchScript or not""" self.left_decoder.tie_or_clone_weights(jit_mode) self.right_decoder.tie_or_clone_weights(jit_mode)